Top | Contents | index | ? |
The GNU make
utility determines which pieces of a
large program need to be recompiled, and issues the commands to recompile them.
This edition of the GNU Make Manual, last updated 08 July 2002,
documents GNU make
Version 3.80.
This manual describes make
and contains the following chapters:
See this for information about the version of the document.
1. Overview of make
2. An Introduction to Makefiles 3. Writing Makefiles Makefiles tell make
what to do.4. Writing Rules Rules describe when a file must be remade. 5. Writing the Commands in Rules Commands say how to remake a file. 6. How to Use Variables use variables to avoid repetition. 7. Conditional Parts of Makefiles Use or ignore parts of the makefile based on the values of variables. 8. Functions for Transforming Text Many powerful ways to manipulate text. 9. How to Run make
invoke make
on the command line.10. Using Implicit Rules Use implicit rules to treat many files alike, based on their file names. 11. Using make
to Update Archive FilesHow make
can update library archives.12. Features of GNU make
Features GNU make
has over othermake
s.13. Incompatibilities and Missing Features What GNU make
lacks from othermake
s.14. Makefile Conventions A. Quick Reference B. Errors Generated by Make C. Complex Makefile Example
D. GNU Free Documentation License License for copying this manual Index of Concepts Index of Functions, Variables, & Directives
-- The Detailed Node Listing ---
Overview ofmake
Preparing and Running Make 1.1 How to Read This Manual On Reading this Text 1.2 Problems and Bugs
An Introduction to Makefiles
Writing Makefiles
3.1 What Makefiles Contain What makefiles contain. 3.2 What Name to Give Your Makefile name your makefile. 3.3 Including Other Makefiles How one makefile can use another makefile. 3.4 The Variable MAKEFILES
The environment can specify extra makefiles. 3.5 The Variable MAKEFILE_LIST
Discover which makefiles have been read. 3.6 Other Special Variables Other special variables. 3.7 How Makefiles Are Remade How makefiles get remade. 3.8 Overriding Part of Another Makefile override part of one makefile with another makefile. 3.9 How make
Reads a MakefileHow makefiles are parsed.
Writing Rules
4.1 Rule Example An example explained. 4.2 Rule Syntax General syntax explained. 4.3 Types of Prerequisites There are two types of prerequisites. 4.4 Using Wildcard Characters in File Names Using wildcard characters such as `*'. 4.5 Searching Directories for Prerequisites Searching other directories for source files. 4.6 Phony Targets Using a target that is not a real file's name. 4.7 Rules without Commands or Prerequisites use a target without commands or prerequisites to mark other targets as phony. 4.8 Empty Target Files to Record Events When only the date matters and the files are empty. 4.9 Special Built-in Target Names Targets with special built-in meanings. 4.10 Multiple Targets in a Rule When to make use of several targets in a rule. 4.11 Multiple Rules for One Target use several rules with the same target. 4.12 Static Pattern Rules Static pattern rules apply to multiple targets and can vary the prerequisites according to the target name. 4.13 Double-Colon Rules use a special kind of rule to allow several independent rules for one target. 4.14 Generating Prerequisites Automatically automatically generate rules giving prerequisites from source files themselves.
Using Wildcard Characters in File Names
4.4.1 Wildcard Examples Several examples 4.4.2 Pitfalls of Using Wildcards Problems to avoid. 4.4.3 The Function wildcard
cause wildcard expansion where it does not normally take place.
Searching Directories for Prerequisites
4.5.1 VPATH
: Search Path for All PrerequisitesSpecifying a search path that applies to every prerequisite. 4.5.2 The vpath
DirectiveSpecifying a search path for a specified class of names. 4.5.3 How Directory Searches are Performed When and how search paths are applied. 4.5.4 Writing Shell Commands with Directory Search write shell commands that work together with search paths. 4.5.5 Directory Search and Implicit Rules How search paths affect implicit rules. 4.5.6 Directory Search for Link Libraries Directory search for link libraries.
Static Pattern Rules
4.12.1 Syntax of Static Pattern Rules The syntax of static pattern rules. 4.12.2 Static Pattern Rules versus Implicit Rules When are they better than implicit rules?
Writing the Commands in Rules
5.1 Command Echoing control when commands are echoed. 5.2 Command Execution How commands are executed. 5.3 Parallel Execution How commands can be executed in parallel. 5.4 Errors in Commands What happens after a command execution error. 5.5 Interrupting or Killing make
What happens when a command is interrupted. 5.6 Recursive Use of make
Invoking make
from makefiles.5.7 Defining Canned Command Sequences Defining canned sequences of commands. 5.8 Using Empty Commands Defining useful, do-nothing commands.
Recursive Use ofmake
5.6.1 How the MAKE
Variable WorksThe special effects of using $(MAKE). 5.6.2 Communicating Variables to a Sub- make
communicate variables to a sub- make
.5.6.3 Communicating Options to a Sub- make
communicate options to a sub- make
.5.6.4 The --print-directory Option How the -w or --print-directory option helps debug use of recursive make
commands.
How to Use Variables
6.1 Basics of Variable References use the value of a variable. 6.2 The Two Flavors of Variables Variables come in two flavors. 6.3 Advanced Features for Reference to Variables Advanced features for referencing a variable. 6.4 How Variables Get Their Values All the ways variables get their values. 6.5 Setting Variables set a variable in the makefile. 6.6 Appending More Text to Variables append more text to the old value of a variable. 6.7 The override
Directiveset a variable in the makefile even if the user has set it with a command argument. 6.8 Defining Variables Verbatim An alternate way to set a variable to a verbatim string. 6.9 Variables from the Environment Variable values can come from the environment. 6.10 Target-specific Variable Values Variable values can be defined on a per-target basis. 6.11 Pattern-specific Variable Values Target-specific variable values can be applied to a group of targets that match a pattern.
Advanced Features for Reference to Variables
6.3.1 Substitution References Referencing a variable with substitutions on the value. 6.3.2 Computed Variable Names Computing the name of the variable to refer to.
Conditional Parts of Makefiles
7.1 Example of a Conditional Example of a conditional 7.2 Syntax of Conditionals The syntax of conditionals. 7.3 Conditionals that Test Flags Conditionals that test flags.
Functions for Transforming Text
8.1 Function Call Syntax write a function call. 8.2 Functions for String Substitution and Analysis General-purpose text manipulation functions. 8.3 Functions for File Names Functions for manipulating file names. 8.4 The foreach
FunctionRepeat some text with controlled variation. 8.5 The if
FunctionConditionally expand a value. 8.6 The call
FunctionExpand a user-defined function. 8.7 The value
FunctionReturn the un-expanded value of a variable. 8.8 The eval
FunctionEvaluate the arguments as makefile syntax. 8.9 The origin
FunctionFind where a variable got its value. 8.10 The shell
FunctionSubstitute the output of a shell command. 8.11 Functions That Control Make Functions that control how make runs.
How to Runmake
9.1 Arguments to Specify the Makefile specify which makefile to use. 9.2 Arguments to Specify the Goals use goal arguments to specify which parts of the makefile to use. 9.3 Instead of Executing the Commands use mode flags to specify what kind of thing to do with the commands in the makefile other than simply execute them. 9.4 Avoiding Recompilation of Some Files avoid recompiling certain files. 9.5 Overriding Variables override a variable to specify an alternate compiler and other things. 9.6 Testing the Compilation of a Program proceed past some errors, to test compilation. 9.7 Summary of Options
Using Implicit Rules
10.1 Using Implicit Rules use an existing implicit rule to get the commands for updating a file. 10.2 Catalogue of Implicit Rules A list of built-in implicit rules. 10.3 Variables Used by Implicit Rules change what predefined rules do. 10.4 Chains of Implicit Rules use a chain of implicit rules. 10.5 Defining and Redefining Pattern Rules define new implicit rules. 10.6 Defining Last-Resort Default Rules defining commands for rules which cannot find any. 10.7 Old-Fashioned Suffix Rules The old-fashioned style of implicit rule. 10.8 Implicit Rule Search Algorithm The precise algorithm for applying implicit rules.
Defining and Redefining Pattern Rules
10.5.1 Introduction to Pattern Rules An introduction to pattern rules. 10.5.2 Pattern Rule Examples Examples of pattern rules. 10.5.3 Automatic Variables use automatic variables in the commands of implicit rules. 10.5.4 How Patterns Match How patterns match. 10.5.5 Match-Anything Pattern Rules Precautions you should take prior to defining rules that can match any target file whatever. 10.5.6 Canceling Implicit Rules override or cancel built-in rules.
Usingmake
to Update Archive Files
11.1 Archive Members as Targets Archive members as targets. 11.2 Implicit Rule for Archive Member Targets The implicit rule for archive member targets. 11.3 Dangers When Using Archives Dangers to watch out for when using archives. 11.4 Suffix Rules for Archive Files write a special kind of suffix rule for updating archives.
Implicit Rule for Archive Member Targets
11.2.1 Updating Archive Symbol Directories update archive symbol directories.
Makefile Conventions
Copying This Manual
< > << Up >> Top Contents index ? 1. Overview of
make
The
make
utility automatically determines which pieces of a large program need to be recompiled, and issues commands to recompile them. This manual describes GNUmake
, which was implemented by Richard Stallman and Roland McGrath. Development since Version 3.76 has been handled by Paul Smith.GNU
make
conforms to section 6.2 of IEEE Standard 1003.2-1992 (POSIX.2).Our examples show C programs, since they are most common, but use
make
with any programming language whose compiler can be run with a shell command. Indeed,make
is not limited to programs. use it to describe any task where some files must be updated automatically from others whenever the others change.
Preparing and Running Make 1.1 How to Read This Manual On Reading this Text 1.2 Problems and Bugs Preparing and Running Make
To prepare to use
make
, you must write a file called the makefile that describes the relationships among files in your program and provides commands for updating each file. In a program, typically, the executable file is updated from object files, which are in turn made by compiling source files.Once a suitable makefile exists, each time you change some source files, this simple shell command:
makesuffices to perform all necessary recompilations. The
make
program uses the makefile data base and the last-modification times of the files to decide which of the files need to be updated. For each of those files, it issues the commands recorded in the data base.provide command line arguments to
make
to control which files should be recompiled, or how. See section Runmake
.
< > << Up >> Top Contents index ? 1.1 How to Read This Manual
If you are new to
make
, or are looking for a general introduction, read the first few sections of each chapter, skipping the later sections. In each chapter, the first few sections contain introductory or general information and the later sections contain specialized or technical information. The exception is the second chapter, An Introduction to Makefiles, all of which is introductory.If you are familiar with other
make
programs, see Features of GNUmake
, which lists the enhancements GNUmake
has, and Incompatibilities and Missing Features, which explains the few things GNUmake
lacks that others have.For a quick summary, see 9.7 Summary of Options, A. Quick Reference, and 4.9 Special Built-in Target Names.
< > << Up >> Top Contents index ? 1.2 Problems and Bugs
If you have problems with GNU
make
or think you've found a bug, please report it to the developers; we cannot promise to do anything but we might well want to fix it.Before reporting a bug, make sure you've actually found a real bug. Carefully reread the documentation and see if it really says do what you're trying to do. If it's not clear whether you should be able to do something or not, report that too; it's a bug in the documentation!
Before reporting a bug or trying to fix it yourself, try to isolate it to the smallest possible makefile that reproduces the problem. Then send us the makefile and the exact results
make
gave you, including any error or warning messages. Please don't paraphrase these messages: it's best to cut and paste them into your report. When generating this small makefile, be sure to not use any non-free or unusual tools in your commands: almost always emulate what such a tool would do with simple shell commands. Finally, be sure to explain what you expected to occur; this will help us decide whether the problem was really in the documentation.Once you have a precise problem report it in one of two ways. Either send electronic mail to:
bug-make@gnu.orgor use our Web-based project management tool, at:
http://savannah.gnu.org/projects/make/In addition to the information above, please be careful to include the version number of
make
you are using. get this information with the command make --version. Be sure also to include the type of machine and operating system you are using. One way to obtain this information is by looking at the final lines of output from the command make --help.
< > << Up >> Top Contents index ? 2. An Introduction to Makefiles
You need a file called a makefile to tell
make
what to do. Most often, the makefile tellsmake
how to compile and link a program.In this chapter, we will discuss a simple makefile that describes how to compile and link a text editor which consists of eight C source files and three header files. The makefile can also tell
make
how to run miscellaneous commands when explicitly asked (for example, to remove certain files as a clean-up operation). To see a more complex example of a makefile, see C. Complex Makefile Example.When
make
recompiles the editor, each changed C source file must be recompiled. If a header file has changed, each C source file that includes the header file must be recompiled to be safe. Each compilation produces an object file corresponding to the source file. Finally, if any source file has been recompiled, all the object files, whether newly made or saved from previous compilations, must be linked together to produce the new executable editor.
2.1 What a Rule Looks Like What a rule looks like. 2.2 A Simple Makefile 2.3 How make
Processes a MakefileHow make
Processes This Makefile2.4 Variables Make Makefiles Simpler 2.5 Letting make
Deduce the Commands2.6 Another Style of Makefile 2.7 Rules for Cleaning the Directory
< > << Up >> Top Contents index ? 2.1 What a Rule Looks Like
A simple makefile consists of "rules" with the following shape:
target ... : prerequisites ... command ... ...A target is usually the name of a file that is generated by a program; examples of targets are executable or object files. A target can also be the name of an action to carry out, such as clean (see section 4.6 Phony Targets).
A prerequisite is a file that is used as input to create the target. A target often depends on several files.
A command is an action that
make
carries out. A rule may have more than one command, each on its own line. Please note: you need to put a tab character at the beginning of every command line! This is an obscurity that catches the unwary.Usually a command is in a rule with prerequisites and serves to create a target file if any of the prerequisites change. However, the rule that specifies commands for the target need not have prerequisites. For example, the rule containing the delete command associated with the target clean does not have prerequisites.
A rule, then, explains how and when to remake certain files which are the targets of the particular rule.
make
carries out the commands on the prerequisites to create or update the target. A rule can also explain how and when to carry out an action. See section Writing Rules.A makefile may contain other text besides rules, but a simple makefile need only contain rules. Rules may look somewhat more complicated than shown in this template, but all fit the pattern more or less.
< > << Up >> Top Contents index ? 2.2 A Simple Makefile
Here is a straightforward makefile that describes the way an executable file called
edit
depends on eight object files which, in turn, depend on eight C source and three header files.In this example, all the C files include defs.h, but only those defining editing commands include command.h, and only low level files that change the editor buffer include buffer.h.
edit : main.o kbd.o command.o display.o \ insert.o search.o files.o utils.o cc -o edit main.o kbd.o command.o display.o \ insert.o search.o files.o utils.o main.o : main.c defs.h cc -c main.c kbd.o : kbd.c defs.h command.h cc -c kbd.c command.o : command.c defs.h command.h cc -c command.c display.o : display.c defs.h buffer.h cc -c display.c insert.o : insert.c defs.h buffer.h cc -c insert.c search.o : search.c defs.h buffer.h cc -c search.c files.o : files.c defs.h buffer.h command.h cc -c files.c utils.o : utils.c defs.h cc -c utils.c clean : rm edit main.o kbd.o command.o display.o \ insert.o search.o files.o utils.oWe split each long line into two lines using backslash-newline; this is like using one long line, but is easier to read.
To use this makefile to create the executable file called edit, type:
makeTo use this makefile to delete the executable file and all the object files from the directory, type:
make cleanIn the example makefile, the targets include the executable file edit, and the object files main.o and kbd.o. The prerequisites are files such as main.c and defs.h. In fact, each .o file is both a target and a prerequisite. Commands include cc -c main.c and cc -c kbd.c.
When a target is a file, it needs to be recompiled or relinked if any of its prerequisites change. In addition, any prerequisites that are themselves automatically generated should be updated first. In this example, edit depends on each of the eight object files; the object file main.o depends on the source file main.c and on the header file defs.h.
A shell command follows each line that contains a target and prerequisites. These shell commands say how to update the target file. A tab character must come at the beginning of every command line to distinguish commands lines from other lines in the makefile. (Bear in mind that
make
does not know anything about how the commands work. It is up to you to supply commands that will update the target file properly. Allmake
does is execute the commands in the rule you have specified when the target file needs to be updated.)The target clean is not a file, but merely the name of an action. Since you normally do not want to carry out the actions in this rule, clean is not a prerequisite of any other rule. Consequently,
make
never does anything with it unless you tell it specifically. Note that this rule not only is not a prerequisite, it also does not have any prerequisites, so the only purpose of the rule is to run the specified commands. Targets that do not refer to files but are just actions are called phony targets. See section 4.6 Phony Targets, for information about this kind of target. See section Errors in Commands, to see how to causemake
to ignore errors fromrm
or any other command.
< > << Up >> Top Contents index ? 2.3 How
make
Processes a MakefileBy default,
make
starts with the first target (not targets whose names start with .). This is called the default goal. (Goals are the targets thatmake
strives ultimately to update. See section Arguments to Specify the Goals.)In the simple example of the previous section, the default goal is to update the executable program edit; therefore, we put that rule first.
Thus, when you give the command:
make
make
reads the makefile in the current directory and begins by processing the first rule. In the example, this rule is for relinking edit; but beforemake
can fully process this rule, it must process the rules for the files that edit depends on, which in this case are the object files. Each of these files is processed according to its own rule. These rules say to update each .o file by compiling its source file. The recompilation must be done if the source file, or any of the header files named as prerequisites, is more recent than the object file, or if the object file does not exist.The other rules are processed because their targets appear as prerequisites of the goal. If some other rule is not depended on by the goal (or anything it depends on, etc.), that rule is not processed, unless you tell
make
to do so (with a command such asmake clean
).Before recompiling an object file,
make
considers updating its prerequisites, the source file and header files. This makefile does not specify anything to be done for them--the .c and .h files are not the targets of any rules--somake
does nothing for these files. Butmake
would update automatically generated C programs, such as those made by Bison or Yacc, by their own rules at this time.After recompiling whichever object files need it,
make
decides whether to relink edit. This must be done if the file edit does not exist, or if any of the object files are newer than it. If an object file was just recompiled, it is now newer than edit, so edit is relinked.Thus, if we change the file insert.c and run
make
,make
will compile that file to update insert.o, and then link edit. If we change the file command.h and runmake
,make
will recompile the object files kbd.o, command.o and files.o and then link the file edit.
< > << Up >> Top Contents index ? 2.4 Variables Make Makefiles Simpler
In our example, we had to list all the object files twice in the rule for edit (repeated here):
edit : main.o kbd.o command.o display.o \ insert.o search.o files.o utils.o cc -o edit main.o kbd.o command.o display.o \ insert.o search.o files.o utils.oSuch duplication is error-prone; if a new object file is added to the system, we might add it to one list and forget the other. We can eliminate the risk and simplify the makefile by using a variable. Variables allow a text string to be defined once and substituted in multiple places later (see section Use Variables).
It is standard practice for every makefile to have a variable named
objects
,OBJECTS
,objs
,OBJS
,obj
, orOBJ
which is a list of all object file names. We would define such a variableobjects
with a line like this in the makefile:
objects = main.o kbd.o command.o display.o \ insert.o search.o files.o utils.oThen, each place we want to put a list of the object file names, we can substitute the variable's value by writing $(objects) (see section Use Variables).
Here is how the complete simple makefile looks when you use a variable for the object files:
objects = main.o kbd.o command.o display.o \ insert.o search.o files.o utils.o edit : $(objects) cc -o edit $(objects) main.o : main.c defs.h cc -c main.c kbd.o : kbd.c defs.h command.h cc -c kbd.c command.o : command.c defs.h command.h cc -c command.c display.o : display.c defs.h buffer.h cc -c display.c insert.o : insert.c defs.h buffer.h cc -c insert.c search.o : search.c defs.h buffer.h cc -c search.c files.o : files.c defs.h buffer.h command.h cc -c files.c utils.o : utils.c defs.h cc -c utils.c clean : rm edit $(objects)
< > << Up >> Top Contents index ? 2.5 Letting
make
Deduce the CommandsIt is not necessary to spell out the commands for compiling the individual C source files, because
make
can figure them out: it has an implicit rule for updating a .o file from a correspondingly named .c file using a cc -c command. For example, it will use the command cc -c main.c -o main.o to compile main.c into main.o. We can therefore omit the commands from the rules for the object files. See section Using Implicit Rules.When a .c file is used automatically in this way, it is also automatically added to the list of prerequisites. We can therefore omit the .c files from the prerequisites, provided we omit the commands.
Here is the entire example, with both of these changes, and a variable
objects
as suggested above:
objects = main.o kbd.o command.o display.o \ insert.o search.o files.o utils.o edit : $(objects) cc -o edit $(objects) main.o : defs.h kbd.o : defs.h command.h command.o : defs.h command.h display.o : defs.h buffer.h insert.o : defs.h buffer.h search.o : defs.h buffer.h files.o : defs.h buffer.h command.h utils.o : defs.h .PHONY : clean clean : rm edit $(objects)This is how we would write the makefile in actual practice. (The complications associated with clean are described elsewhere. See 4.6 Phony Targets, and Errors in Commands.)
Because implicit rules are so convenient, they are important. You will see them used frequently.
< > << Up >> Top Contents index ? 2.6 Another Style of Makefile
When the objects of a makefile are created only by implicit rules, an alternative style of makefile is possible. In this style of makefile, you group entries by their prerequisites instead of by their targets. Here is what one looks like:
objects = main.o kbd.o command.o display.o \ insert.o search.o files.o utils.o edit : $(objects) cc -o edit $(objects) $(objects) : defs.h kbd.o command.o files.o : command.h display.o insert.o search.o files.o : buffer.hHere defs.h is given as a prerequisite of all the object files; command.h and buffer.h are prerequisites of the specific object files listed for them.
Whether this is better is a matter of taste: it is more compact, but some people dislike it because they find it clearer to put all the information about each target in one place.
< > << Up >> Top Contents index ? 2.7 Rules for Cleaning the Directory
Compiling a program is not the only thing you might want to write rules for. Makefiles commonly tell how to do a few other things besides compiling a program: for example, how to delete all the object files and executables so that the directory is clean.
Here is how we could write a
make
rule for cleaning our example editor:
clean: rm edit $(objects)In practice, we might want to write the rule in a somewhat more complicated manner to handle unanticipated situations. We would do this:
.PHONY : clean clean : -rm edit $(objects)This prevents
make
from getting confused by an actual file called clean and causes it to continue in spite of errors fromrm
. (See 4.6 Phony Targets, and Errors in Commands.)A rule such as this should not be placed at the beginning of the makefile, because we do not want it to run by default! Thus, in the example makefile, we want the rule for
edit
, which recompiles the editor, to remain the default goal.Since
clean
is not a prerequisite ofedit
, this rule will not run at all if we give the command make with no arguments. In order to make the rule run, we have to type make clean. See section Runmake
.
< > << Up >> Top Contents index ? 3. Writing Makefiles
The information that tells
make
how to recompile a system comes from reading a data base called the makefile.
3.1 What Makefiles Contain What makefiles contain. 3.2 What Name to Give Your Makefile name your makefile. 3.3 Including Other Makefiles How one makefile can use another makefile. 3.4 The Variable MAKEFILES
The environment can specify extra makefiles. 3.5 The Variable MAKEFILE_LIST
Discover which makefiles have been read. 3.6 Other Special Variables Other special variables. 3.7 How Makefiles Are Remade How makefiles get remade. 3.8 Overriding Part of Another Makefile override part of one makefile with another makefile. 3.9 How make
Reads a MakefileHow makefiles are parsed.
< > << Up >> Top Contents index ? 3.1 What Makefiles Contain
Makefiles contain five kinds of things: explicit rules, implicit rules, variable definitions, directives, and comments. Rules, variables, and directives are described at length in later chapters.
- An explicit rule says when and how to remake one or more files, called the rule's targets. It lists the other files that the targets depend on, call the prerequisites of the target, and may also give commands to use to create or update the targets. See section Writing Rules.
- An implicit rule says when and how to remake a class of files based on their names. It describes how a target may depend on a file with a name similar to the target and gives commands to create or update such a target. See section Using Implicit Rules.
- A variable definition is a line that specifies a text string value for a variable that can be substituted into the text later. The simple makefile example shows a variable definition for
objects
as a list of all object files (see section Variables Make Makefiles Simpler).- A directive is a command for
make
to do something special while reading the makefile. These include:
- Reading another makefile (see section Including Other Makefiles).
- Deciding (based on the values of variables) whether to use or ignore a part of the makefile (see section Conditional Parts of Makefiles).
- Defining a variable from a verbatim string containing multiple lines (see section Defining Variables Verbatim).
- # in a line of a makefile starts a comment. It and the rest of the line are ignored, except that a trailing backslash not escaped by another backslash will continue the comment across multiple lines. A line containing just a comment (with perhaps spaces before it) is effectively blank, and is ignored. If you want a literal
#
, escape it with a backslash (e.g.,\#
). Comments may appear on any line in the makefile, although they are treated specially in certain situations.Within a command script (if the line begins with a TAB character) the entire line is passed to the shell, just as with any other line that begins with a TAB. The shell decides how to interpret the text: whether or not this is a comment is up to the shell.
Within a
define
directive, comments are not ignored during the definition of the variable, but rather kept intact in the value of the variable. When the variable is expanded they will either be treated asmake
comments or as command script text, depending on the context in which the variable is evaluated.
< > << Up >> Top Contents index ? 3.2 What Name to Give Your Makefile
By default, when
make
looks for the makefile, it tries the following names, in order: GNUmakefile, makefile and Makefile.Normally you should call your makefile either makefile or Makefile. (We recommend Makefile because it appears prominently near the beginning of a directory listing, right near other important files such as README.) The first name checked, GNUmakefile, is not recommended for most makefiles. You should use this name if you have a makefile that is specific to GNU
make
, and will not be understood by other versions ofmake
. Othermake
programs look for makefile and Makefile, but not GNUmakefile.If
make
finds none of these names, it does not use any makefile. Then you must specify a goal with a command argument, andmake
will attempt to figure out how to remake it using only its built-in implicit rules. See section Using Implicit Rules.If you want to use a nonstandard name for your makefile, specify the makefile name with the -f or --file option. The arguments -f name or --file=name tell
make
to read the file name as the makefile. If you use more than one -f or --file option, specify several makefiles. All the makefiles are effectively concatenated in the order specified. The default makefile names GNUmakefile, makefile and Makefile are not checked automatically if you specify -f or --file.
< > << Up >> Top Contents index ? 3.3 Including Other Makefiles
The
include
directive tellsmake
to suspend reading the current makefile and read one or more other makefiles before continuing. The directive is a line in the makefile that looks like this:
include filenames...filenames can contain shell file name patterns.
Extra spaces are allowed and ignored at the beginning of the line, but a tab is not allowed. (If the line begins with a tab, it will be considered a command line.) Whitespace is required between
include
and the file names, and between file names; extra whitespace is ignored there and at the end of the directive. A comment starting with # is allowed at the end of the line. If the file names contain any variable or function references, they are expanded. See section Use Variables.For example, if you have three .mk files, a.mk, b.mk, and c.mk, and
$(bar)
expands tobish bash
, then the following expression
include foo *.mk $(bar)is equivalent to
include foo a.mk b.mk c.mk bish bashWhen
make
processes aninclude
directive, it suspends reading of the containing makefile and reads from each listed file in turn. When that is finished,make
resumes reading the makefile in which the directive appears.One occasion for using
include
directives is when several programs, handled by individual makefiles in various directories, need to use a common set of variable definitions (see section Setting Variables) or pattern rules (see section Defining and Redefining Pattern Rules).Another such occasion is when you want to generate prerequisites from source files automatically; the prerequisites can be put in a file that is included by the main makefile. This practice is generally cleaner than that of somehow appending the prerequisites to the end of the main makefile as has been traditionally done with other versions of
make
. See section 4.14 Generating Prerequisites Automatically.If the specified name does not start with a slash, and the file is not found in the current directory, several other directories are searched. First, any directories you have specified with the -I or --include-dir option are searched (see section Summary of Options). Then the following directories (if they exist) are searched, in this order: prefix/include (normally /usr/local/include (1)) /usr/gnu/include, /usr/local/include, /usr/include.
If an included makefile cannot be found in any of these directories, a warning message is generated, but it is not an immediately fatal error; processing of the makefile containing the
include
continues. Once it has finished reading makefiles,make
will try to remake any that are out of date or don't exist. See section How Makefiles Are Remade. Only after it has tried to find a way to remake a makefile and failed, willmake
diagnose the missing makefile as a fatal error.If you want
make
to simply ignore a makefile which does not exist and cannot be remade, with no error message, use the-include
directive instead ofinclude
, like this:
-include filenames...This acts like
include
in every way except that there is no error (not even a warning) if any of the filenames do not exist. For compatibility with some othermake
implementations,sinclude
is another name for-include
.
< > << Up >> Top Contents index ? 3.4 The Variable
MAKEFILES
If the environment variable
MAKEFILES
is defined,make
considers its value as a list of names (separated by whitespace) of additional makefiles to be read before the others. This works much like theinclude
directive: various directories are searched for those files (see section Including Other Makefiles). In addition, the default goal is never taken from one of these makefiles and it is not an error if the files listed inMAKEFILES
are not found.The main use of
MAKEFILES
is in communication between recursive invocations ofmake
(see section Recursive Use ofmake
). It usually is not desirable to set the environment variable before a top-level invocation ofmake
, because it is usually better not to mess with a makefile from outside. However, if you are runningmake
without a specific makefile, a makefile inMAKEFILES
can do useful things to help the built-in implicit rules work better, such as defining search paths (see section 4.5 Searching Directories for Prerequisites).Some users are tempted to set
MAKEFILES
in the environment automatically on login, and program makefiles to expect this to be done. This is a very bad idea, because such makefiles will fail to work if run by anyone else. It is much better to write explicitinclude
directives in the makefiles. See section Including Other Makefiles.
< > << Up >> Top Contents index ? 3.5 The Variable
MAKEFILE_LIST
As
make
reads various makefiles, including any obtained from theMAKEFILES
variable, the command line, the default files, or frominclude
directives, their names will be automatically appended to theMAKEFILE_LIST
variable. They are added right beforemake
begins to parse them.This means that if the first thing a makefile does is examine the last word in this variable, it will be the name of the current makefile. Once the current makefile has used
include
, however, the last word will be the just-included makefile.If a makefile named
Makefile
has this content:
name1 := $(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)) include inc.mk name2 := $(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)) all: @echo name1 = $(name1) @echo name2 = $(name2)then you would expect to see this output:
name1 = Makefile name2 = inc.mkSee section 8.2 Functions for String Substitution and Analysis, for more information on the
word
andwords
functions used above. See section The Two Flavors of Variables, for more information on simply-expanded (:=
) variable definitions.
< > << Up >> Top Contents index ? 3.6 Other Special Variables
GNU
make
also supports a special variable. Note that any value you assign to this variable will be ignored; it will always return its special value.The first special variable is
.VARIABLES
. When expanded, the value consists of a list of the names of all global variables defined in all makefiles read up until that point. This includes variables which have empty values, as well as built-in variables (see section Variables Used by Implicit Rules), but does not include any variables which are only defined in a target-specific context.
< > << Up >> Top Contents index ? 3.7 How Makefiles Are Remade
Sometimes makefiles can be remade from other files, such as RCS or SCCS files. If a makefile can be remade from other files, you probably want
make
to get an up-to-date version of the makefile to read in.To this end, after reading in all makefiles,
make
will consider each as a goal target and attempt to update it. If a makefile has a rule which says how to update it (found either in that very makefile or in another one) or if an implicit rule applies to it (see section Using Implicit Rules), it will be updated if necessary. After all makefiles have been checked, if any have actually been changed,make
starts with a clean slate and reads all the makefiles over again. (It will also attempt to update each of them over again, but normally this will not change them again, since they are already up to date.)If you know that one or more of your makefiles cannot be remade and you want to keep
make
from performing an implicit rule search on them, perhaps for efficiency reasons, use any normal method of preventing implicit rule lookup to do so. For example, write an explicit rule with the makefile as the target, and an empty command string (see section Using Empty Commands).If the makefiles specify a double-colon rule to remake a file with commands but no prerequisites, that file will always be remade (see section 4.13 Double-Colon Rules). In the case of makefiles, a makefile that has a double-colon rule with commands but no prerequisites will be remade every time
make
is run, and then again aftermake
starts over and reads the makefiles in again. This would cause an infinite loop:make
would constantly remake the makefile, and never do anything else. So, to avoid this,make
will not attempt to remake makefiles which are specified as targets of a double-colon rule with commands but no prerequisites.If you do not specify any makefiles to be read with -f or --file options,
make
will try the default makefile names; see section What Name to Give Your Makefile. Unlike makefiles explicitly requested with -f or --file options,make
is not certain that these makefiles should exist. However, if a default makefile does not exist but can be created by runningmake
rules, you probably want the rules to be run so that the makefile can be used.Therefore, if none of the default makefiles exists,
make
will try to make each of them in the same order in which they are searched for (see section What Name to Give Your Makefile) until it succeeds in making one, or it runs out of names to try. Note that it is not an error ifmake
cannot find or make any makefile; a makefile is not always necessary.When you use the -t or --touch option (see section Instead of Executing the Commands), you would not want to use an out-of-date makefile to decide which targets to touch. So the -t option has no effect on updating makefiles; they are really updated even if -t is specified. Likewise, -q (or --question) and -n (or --just-print) do not prevent updating of makefiles, because an out-of-date makefile would result in the wrong output for other targets. Thus, make -f mfile -n foo will update mfile, read it in, and then print the commands to update foo and its prerequisites without running them. The commands printed for foo will be those specified in the updated contents of mfile.
However, on occasion you might actually wish to prevent updating of even the makefiles. do this by specifying the makefiles as goals in the command line as well as specifying them as makefiles. When the makefile name is specified explicitly as a goal, the options -t and so on do apply to them.
Thus, make -f mfile -n mfile foo would read the makefile mfile, print the commands needed to update it without actually running them, and then print the commands needed to update foo without running them. The commands for foo will be those specified by the existing contents of mfile.
< > << Up >> Top Contents index ? 3.8 Overriding Part of Another Makefile
Sometimes it is useful to have a makefile that is mostly just like another makefile. often use the include directive to include one in the other, and add more targets or variable definitions. However, if the two makefiles give different commands for the same target,
make
will not let you just do this. But there is another way.In the containing makefile (the one that wants to include the other), use a match-anything pattern rule to say that to remake any target that cannot be made from the information in the containing makefile,
make
should look in another makefile. See section 10.5 Defining and Redefining Pattern Rules, for more information on pattern rules.For example, if you have a makefile called Makefile that says how to make the target foo (and other targets), write a makefile called GNUmakefile that contains:
foo: frobnicate > foo %: force @$(MAKE) -f Makefile $@ force: ;If you say make foo,
make
will find GNUmakefile, read it, and see that to make foo, it needs to run the command frobnicate > foo. If you say make bar,make
will find no way to make bar in GNUmakefile, so it will use the commands from the pattern rule: make -f Makefile bar. If Makefile provides a rule for updating bar,make
will apply the rule. And likewise for any other target that GNUmakefile does not say how to make.The way this works is that the pattern rule has a pattern of just %, so it matches any target whatever. The rule specifies a prerequisite force, to guarantee that the commands will be run even if the target file already exists. We give force target empty commands to prevent
make
from searching for an implicit rule to build it--otherwise it would apply the same match-anything rule to force itself and create a prerequisite loop!
< > << Up >> Top Contents index ? 3.9 How
make
Reads a MakefileGNU
make
does its work in two distinct phases. During the first phase it reads all the makefiles, included makefiles, etc. and internalizes all the variables and their values, implicit and explicit rules, and constructs a dependency graph of all the targets and their prerequisites. During the second phase,make
uses these internal structures to determine what targets will need to be rebuilt and to invoke the rules necessary to do so.It's important to understand this two-phase approach because it has a direct impact on how variable and function expansion happens; this is often a source of some confusion when writing makefiles. Here we will present a summary of the phases in which expansion happens for different constructs within the makefile. We say that expansion is immediate if it happens during the first phase: in this case
make
will expand any variables or functions in that section of a construct as the makefile is parsed. We say that expansion is deferred if expansion is not performed immediately. Expansion of deferred construct is not performed until either the construct appears later in an immediate context, or until the second phase.You may not be familiar with some of these constructs yet. reference this section as you become familiar with them, in later chapters.
Variable Assignment
Variable definitions are parsed as follows:
immediate = deferred immediate ?= deferred immediate := immediate immediate += deferred or immediate define immediate deferred endefFor the append operator, +=, the right-hand side is considered immediate if the variable was previously set as a simple variable (:=), and deferred otherwise.
Conditional Statements
All instances of conditional syntax are parsed immediately, in their entirety; this includes the
ifdef
,ifeq
,ifndef
, andifneq
forms.Rule Definition
A rule is always expanded the same way, regardless of the form:
immediate : immediate ; deferred deferredThat is, the target and prerequisite sections are expanded immediately, and the commands used to construct the target are always deferred. This general rule is true for explicit rules, pattern rules, suffix rules, static pattern rules, and simple prerequisite definitions.
< > << Up >> Top Contents index ? 4. Writing Rules
A rule appears in the makefile and says when and how to remake certain files, called the rule's targets (most often only one per rule). It lists the other files that are the prerequisites of the target, and commands to use to create or update the target.
The order of rules is not significant, except for determining the default goal: the target for
make
to consider, if you do not otherwise specify one. The default goal is the target of the first rule in the first makefile. If the first rule has multiple targets, only the first target is taken as the default. There are two exceptions: a target starting with a period is not a default unless it contains one or more slashes, /, as well; and, a target that defines a pattern rule has no effect on the default goal. (See section Defining and Redefining Pattern Rules.)Therefore, we usually write the makefile so that the first rule is the one for compiling the entire program or all the programs described by the makefile (often with a target called all). See section Arguments to Specify the Goals.
4.1 Rule Example An example explained. 4.2 Rule Syntax General syntax explained. 4.3 Types of Prerequisites There are two types of prerequisites. 4.4 Using Wildcard Characters in File Names Using wildcard characters such as `*'. 4.5 Searching Directories for Prerequisites Searching other directories for source files. 4.6 Phony Targets Using a target that is not a real file's name. 4.7 Rules without Commands or Prerequisites use a target without commands or prerequisites to mark other targets as phony. 4.8 Empty Target Files to Record Events When only the date matters and the files are empty. 4.9 Special Built-in Target Names Targets with special built-in meanings. 4.10 Multiple Targets in a Rule When to make use of several targets in a rule. 4.11 Multiple Rules for One Target use several rules with the same target. 4.12 Static Pattern Rules Static pattern rules apply to multiple targets and can vary the prerequisites according to the target name. 4.13 Double-Colon Rules use a special kind of rule to allow several independent rules for one target. 4.14 Generating Prerequisites Automatically automatically generate rules giving prerequisites from source files themselves.
< > << Up >> Top Contents index ? 4.1 Rule Example
Here is an example of a rule:
foo.o : foo.c defs.h # module for twiddling the frobs cc -c -g foo.cIts target is foo.o and its prerequisites are foo.c and defs.h. It has one command, which is cc -c -g foo.c. The command line starts with a tab to identify it as a command.
This rule says two things:
- How to decide whether foo.o is out of date: it is out of date if it does not exist, or if either foo.c or defs.h is more recent than it.
- How to update the file foo.o: by running
cc
as stated. The command does not explicitly mention defs.h, but we presume that foo.c includes it, and that that is why defs.h was added to the prerequisites.
< > << Up >> Top Contents index ? 4.2 Rule Syntax
In general, a rule looks like this:
targets : prerequisites command ...or like this:
targets : prerequisites ; command command ...The targets are file names, separated by spaces. Wildcard characters may be used (see section Using Wildcard Characters in File Names) and a name of the form a(m) represents member m in archive file a (see section Archive Members as Targets). Usually there is only one target per rule, but occasionally there is a reason to have more (see section Multiple Targets in a Rule).
The command lines start with a tab character. The first command may appear on the line after the prerequisites, with a tab character, or may appear on the same line, with a semicolon. Either way, the effect is the same. See section Writing the Commands in Rules.
Because dollar signs are used to start variable references, if you really want a dollar sign in a rule you must write two of them, $$ (see section Use Variables). You may split a long line by inserting a backslash followed by a newline, but this is not required, as
make
places no limit on the length of a line in a makefile.A rule tells
make
two things: when the targets are out of date, and how to update them when necessary.The criterion for being out of date is specified in terms of the prerequisites, which consist of file names separated by spaces. (Wildcards and archive members (see section 11. Using
make
to Update Archive Files) are allowed here too.) A target is out of date if it does not exist or if it is older than any of the prerequisites (by comparison of last-modification times). The idea is that the contents of the target file are computed based on information in the prerequisites, so if any of the prerequisites changes, the contents of the existing target file are no longer necessarily valid.How to update is specified by commands. These are lines to be executed by the shell (normally sh), but with some extra features (see section Writing the Commands in Rules).
< > << Up >> Top Contents index ? 4.3 Types of Prerequisites
There are actually two different types of prerequisites understood by GNU
make
: normal prerequisites such as described in the previous section, and order-only prerequisites. A normal prerequisite actually makes two statements: first, it imposes an order of execution of build commands: any commands necessary to build any of a target's prerequisites will be fully executed before any commands necessary to build the target. Second, it imposes a dependency relationship: if any prerequisite is newer than the target, then the target is considered out-of-date and must be rebuilt.Normally, this is exactly what you want: if a target's prerequisite is updated, then the target should also be updated.
Occasionally, however, you have a situation where you want to impose a specific ordering on the rules to be invoked without forcing the target to be updated if one of those rules is executed. In that case, you want to define order-only prerequisites. Order-only prerequisites can be specified by placing a pipe symbol (
|
) in the prerequisites list: any prerequisites to the left of the pipe symbol are normal; any prerequisites to the right are order-only:
targets : normal-prerequisites | order-only-prerequisitesThe normal prerequisites section may of course be empty. Also, you may still declare multiple lines of prerequisites for the same target: they are appended appropriately. Note that if you declare the same file to be both a normal and an order-only prerequisite, the normal prerequisite takes precedence (since they are a strict superset of the behavior of an order-only prerequisite).
< > << Up >> Top Contents index ? 4.4 Using Wildcard Characters in File Names
A single file name can specify many files using wildcard characters. The wildcard characters in
make
are *, ? and ...], the same as in the Bourne shell. For example, *.c specifies a list of all the files (in the working directory) whose names end in .c.The character ~ at the beginning of a file name also has special significance. If alone, or followed by a slash, it represents your home directory. For example ~/bin expands to /home/you/bin. If the ~ is followed by a word, the string represents the home directory of the user named by that word. For example ~john/bin expands to /home/john/bin. On systems which don't have a home directory for each user (such as MS-DOS or MS-Windows), this functionality can be simulated by setting the environment variable HOME.
Wildcard expansion happens automatically in targets, in prerequisites, and in commands (where the shell does the expansion). In other contexts, wildcard expansion happens only if you request it explicitly with the
wildcard
function.The special significance of a wildcard character can be turned off by preceding it with a backslash. Thus, foo\*bar would refer to a specific file whose name consists of foo, an asterisk, and bar.
4.4.1 Wildcard Examples Several examples 4.4.2 Pitfalls of Using Wildcards Problems to avoid. 4.4.3 The Function wildcard
cause wildcard expansion where it does not normally take place.
< > << Up >> Top Contents index ? 4.4.1 Wildcard Examples
Wildcards can be used in the commands of a rule, where they are expanded by the shell. For example, here is a rule to delete all the object files:
clean: rm -f *.oWildcards are also useful in the prerequisites of a rule. With the following rule in the makefile, make print will print all the .c files that have changed since the last time you printed them:
print: *.c lpr -p $? touch printThis rule uses print as an empty target file; see Empty Target Files to Record Events. (The automatic variable $? is used to print only those files that have changed; see Automatic Variables.)
Wildcard expansion does not happen when you define a variable. Thus, if you write this:
objects = *.othen the value of the variable
objects
is the actual string *.o. However, if you use the value ofobjects
in a target, prerequisite or command, wildcard expansion will take place at that time. To setobjects
to the expansion, instead use:
objects := $(wildcard *.o)See section 4.4.3 The Function
wildcard
.
< > << Up >> Top Contents index ? 4.4.2 Pitfalls of Using Wildcards
Now here is an example of a naive way of using wildcard expansion, that does not do what you would intend. Suppose you would like to say that the executable file foo is made from all the object files in the directory, and you write this:
objects = *.o foo : $(objects) cc -o foo $(CFLAGS) $(objects)The value of
objects
is the actual string *.o. Wildcard expansion happens in the rule for foo, so that each existing .o file becomes a prerequisite of foo and will be recompiled if necessary.But what if you delete all the .o files? When a wildcard matches no files, it is left as it is, so then foo will depend on the oddly-named file *.o. Since no such file is likely to exist,
make
will give you an error saying it cannot figure out how to make *.o. This is not what you want!Actually it is possible to obtain the desired result with wildcard expansion, but you need more sophisticated techniques, including the
wildcard
function and string substitution. See section The Functionwildcard
.Microsoft operating systems (MS-DOS and MS-Windows) use backslashes to separate directories in pathnames, like so:
c:\foo\bar\baz.cThis is equivalent to the Unix-style c:/foo/bar/baz.c (the c: part is the so-called drive letter). When
make
runs on these systems, it supports backslashes as well as the Unix-style forward slashes in pathnames. However, this support does not include the wildcard expansion, where backslash is a quote character. Therefore, you must use Unix-style slashes in these cases.
< > << Up >> Top Contents index ? 4.4.3 The Function
wildcard
Wildcard expansion happens automatically in rules. But wildcard expansion does not normally take place when a variable is set, or inside the arguments of a function. If you want to do wildcard expansion in such places, you need to use the
wildcard
function, like this:
$(wildcard pattern...)This string, used anywhere in a makefile, is replaced by a space-separated list of names of existing files that match one of the given file name patterns. If no existing file name matches a pattern, then that pattern is omitted from the output of the
wildcard
function. Note that this is different from how unmatched wildcards behave in rules, where they are used verbatim rather than ignored (see section 4.4.2 Pitfalls of Using Wildcards).One use of the
wildcard
function is to get a list of all the C source files in a directory, like this:
$(wildcard *.c)We can change the list of C source files into a list of object files by replacing the .c suffix with .o in the result, like this:
$(patsubst %.c,%.o,$(wildcard *.c))(Here we have used another function,
patsubst
. See section Functions for String Substitution and Analysis.)Thus, a makefile to compile all C source files in the directory and then link them together could be written as follows:
objects := $(patsubst %.c,%.o,$(wildcard *.c)) foo : $(objects) cc -o foo $(objects)(This takes advantage of the implicit rule for compiling C programs, so there is no need to write explicit rules for compiling the files. See section The Two Flavors of Variables, for an explanation of :=, which is a variant of =.)
< > << Up >> Top Contents index ? 4.5 Searching Directories for Prerequisites
For large systems, it is often desirable to put sources in a separate directory from the binaries. The directory search features of
make
facilitate this by searching several directories automatically to find a prerequisite. When you redistribute the files among directories, you do not need to change the individual rules, just the search paths.
4.5.1 VPATH
: Search Path for All PrerequisitesSpecifying a search path that applies to every prerequisite. 4.5.2 The vpath
DirectiveSpecifying a search path for a specified class of names. 4.5.3 How Directory Searches are Performed When and how search paths are applied. 4.5.4 Writing Shell Commands with Directory Search write shell commands that work together with search paths. 4.5.5 Directory Search and Implicit Rules How search paths affect implicit rules. 4.5.6 Directory Search for Link Libraries Directory search for link libraries.
< > << Up >> Top Contents index ? 4.5.1
VPATH
: Search Path for All PrerequisitesThe value of the
make
variableVPATH
specifies a list of directories thatmake
should search. Most often, the directories are expected to contain prerequisite files that are not in the current directory; however,VPATH
specifies a search list thatmake
applies for all files, including files which are targets of rules.Thus, if a file that is listed as a target or prerequisite does not exist in the current directory,
make
searches the directories listed inVPATH
for a file with that name. If a file is found in one of them, that file may become the prerequisite (see below). Rules may then specify the names of files in the prerequisite list as if they all existed in the current directory. See section Writing Shell Commands with Directory Search.In the
VPATH
variable, directory names are separated by colons or blanks. The order in which directories are listed is the order followed bymake
in its search. (On MS-DOS and MS-Windows, semi-colons are used as separators of directory names inVPATH
, since the colon can be used in the pathname itself, after the drive letter.)For example,
VPATH = src:../headersspecifies a path containing two directories, src and ../headers, which
make
searches in that order.With this value of
VPATH
, the following rule,
foo.o : foo.cis interpreted as if it were written like this:
foo.o : src/foo.cassuming the file foo.c does not exist in the current directory but is found in the directory src.
< > << Up >> Top Contents index ? 4.5.2 The
vpath
DirectiveSimilar to the
VPATH
variable, but more selective, is thevpath
directive (note lower case), which allows you to specify a search path for a particular class of file names: those that match a particular pattern. Thus supply certain search directories for one class of file names and other directories (or none) for other file names.There are three forms of the
vpath
directive:
vpath pattern directories
- Specify the search path directories for file names that match pattern.
The search path, directories, is a list of directories to be searched, separated by colons (semi-colons on MS-DOS and MS-Windows) or blanks, just like the search path used in the
VPATH
variable.
vpath pattern
- Clear out the search path associated with pattern.
vpath
Clear all search paths previously specified with
vpath
directives.A
vpath
pattern is a string containing a % character. The string must match the file name of a prerequisite that is being searched for, the % character matching any sequence of zero or more characters (as in pattern rules; see section Defining and Redefining Pattern Rules). For example,%.h
matches files that end in.h
. (If there is no %, the pattern must match the prerequisite exactly, which is not useful very often.)% characters in a
vpath
directive's pattern can be quoted with preceding backslashes (\). Backslashes that would otherwise quote % characters can be quoted with more backslashes. Backslashes that quote % characters or other backslashes are removed from the pattern before it is compared to file names. Backslashes that are not in danger of quoting % characters go unmolested.When a prerequisite fails to exist in the current directory, if the pattern in a
vpath
directive matches the name of the prerequisite file, then the directories in that directive are searched just like (and before) the directories in theVPATH
variable.For example,
vpath %.h ../headerstells
make
to look for any prerequisite whose name ends in .h in the directory ../headers if the file is not found in the current directory.If several
vpath
patterns match the prerequisite file's name, thenmake
processes each matchingvpath
directive one by one, searching all the directories mentioned in each directive.make
handles multiplevpath
directives in the order in which they appear in the makefile; multiple directives with the same pattern are independent of each other.Thus,
vpath %.c foo vpath % blish vpath %.c barwill look for a file ending in .c in foo, then blish, then bar, while
vpath %.c foo:bar vpath % blishwill look for a file ending in .c in foo, then bar, then blish.
< > << Up >> Top Contents index ? 4.5.3 How Directory Searches are Performed
When a prerequisite is found through directory search, regardless of type (general or selective), the pathname located may not be the one that
make
actually provides you in the prerequisite list. Sometimes the path discovered through directory search is thrown away.The algorithm
make
uses to decide whether to keep or abandon a path found via directory search is as follows:
- If a target file does not exist at the path specified in the makefile, directory search is performed.
- If the directory search is successful, that path is kept and this file is tentatively stored as the target.
- All prerequisites of this target are examined using this same method.
- After processing the prerequisites, the target may or may not need to be rebuilt:
- If the target does not need to be rebuilt, the path to the file found during directory search is used for any prerequisite lists which contain this target. In short, if
make
doesn't need to rebuild the target then you use the path found via directory search.
- If the target does need to be rebuilt (is out-of-date), the pathname found during directory search is thrown away, and the target is rebuilt using the file name specified in the makefile. In short, if
make
must rebuild, then the target is rebuilt locally, not in the directory found via directory search.This algorithm may seem complex, but in practice it is quite often exactly what you want.
Other versions of
make
use a simpler algorithm: if the file does not exist, and it is found via directory search, then that pathname is always used whether or not the target needs to be built. Thus, if the target is rebuilt it is created at the pathname discovered during directory search.If, in fact, this is the behavior you want for some or all of your directories, use the
GPATH
variable to indicate this tomake
.
GPATH
has the same syntax and format asVPATH
(that is, a space- or colon-delimited list of pathnames). If an out-of-date target is found by directory search in a directory that also appears inGPATH
, then that pathname is not thrown away. The target is rebuilt using the expanded path.
< > << Up >> Top Contents index ? 4.5.4 Writing Shell Commands with Directory Search
When a prerequisite is found in another directory through directory search, this cannot change the commands of the rule; they will execute as written. Therefore, you must write the commands with care so that they will look for the prerequisite in the directory where
make
finds it.This is done with the automatic variables such as $^ (see section Automatic Variables). For instance, the value of $^ is a list of all the prerequisites of the rule, including the names of the directories in which they were found, and the value of $@ is the target. Thus:
foo.o : foo.c cc -c $(CFLAGS) $^ -o $@(The variable
CFLAGS
exists so specify flags for C compilation by implicit rules; we use it here for consistency so it will affect all C compilations uniformly; see section Variables Used by Implicit Rules.)Often the prerequisites include header files as well, which you do not want to mention in the commands. The automatic variable $< is just the first prerequisite:
VPATH = src:../headers foo.o : foo.c defs.h hack.h cc -c $(CFLAGS) $< -o $@
< > << Up >> Top Contents index ? 4.5.5 Directory Search and Implicit Rules
The search through the directories specified in
VPATH
or withvpath
also happens during consideration of implicit rules (see section Using Implicit Rules).For example, when a file foo.o has no explicit rule,
make
considers implicit rules, such as the built-in rule to compile foo.c if that file exists. If such a file is lacking in the current directory, the appropriate directories are searched for it. If foo.c exists (or is mentioned in the makefile) in any of the directories, the implicit rule for C compilation is applied.The commands of implicit rules normally use automatic variables as a matter of necessity; consequently they will use the file names found by directory search with no extra effort.
< > << Up >> Top Contents index ? 4.5.6 Directory Search for Link Libraries
Directory search applies in a special way to libraries used with the linker. This special feature comes into play when you write a prerequisite whose name is of the form -lname. ( tell something strange is going on here because the prerequisite is normally the name of a file, and the file name of a library generally looks like libname.a, not like -lname.)
When a prerequisite's name has the form -lname,
make
handles it specially by searching for the file libname.so in the current directory, in directories specified by matchingvpath
search paths and theVPATH
search path, and then in the directories /lib, /usr/lib, and prefix/lib (normally /usr/local/lib, but MS-DOS/MS-Windows versions ofmake
behave as if prefix is defined to be the root of the DJGPP installation tree).If that file is not found, then the file libname.a is searched for, in the same directories as above.
For example, if there is a /usr/lib/libcurses.a library on your system (and no /usr/lib/libcurses.so file), then
foo : foo.c -lcurses cc $^ -o $@would cause the command cc foo.c /usr/lib/libcurses.a -o foo to be executed when foo is older than foo.c or than /usr/lib/libcurses.a.
Although the default set of files to be searched for is libname.so and libname.a, this is customizable via the
.LIBPATTERNS
variable. Each word in the value of this variable is a pattern string. When a prerequisite like -lname is seen,make
will replace the percent in each pattern in the list with name and perform the above directory searches using that library filename. If no library is found, the next word in the list will be used.The default value for
.LIBPATTERNS
is "lib%.so lib%.a", which provides the default behavior described above.turn off link library expansion completely by setting this variable to an empty value.
< > << Up >> Top Contents index ? 4.6 Phony Targets
A phony target is one that is not really the name of a file. It is just a name for some commands to be executed when you make an explicit request. There are two reasons to use a phony target: to avoid a conflict with a file of the same name, and to improve performance.
If you write a rule whose commands will not create the target file, the commands will be executed every time the target comes up for remaking. Here is an example:
clean: rm *.o tempBecause the
rm
command does not create a file named clean, probably no such file will ever exist. Therefore, therm
command will be executed every time you say make clean.The phony target will cease to work if anything ever does create a file named clean in this directory. Since it has no prerequisites, the file clean would inevitably be considered up to date, and its commands would not be executed. To avoid this problem, explicitly declare the target to be phony, using the special target
.PHONY
(see section Special Built-in Target Names) as follows:
.PHONY : cleanOnce this is done, make clean will run the commands regardless of whether there is a file named clean.
Since it knows that phony targets do not name actual files that could be remade from other files,
make
skips the implicit rule search for phony targets (see section 10. Using Implicit Rules). This is why declaring a target phony is good for performance, even if you are not worried about the actual file existing.Thus, you first write the line that states that
clean
is a phony target, then you write the rule, like this:
.PHONY: clean clean: rm *.o tempAnother example of the usefulness of phony targets is in conjunction with recursive invocations of
make
(for more information, see Recursive Use ofmake
). In this case the makefile will often contain a variable which lists a number of subdirectories to be built. One way to handle this is with one rule whose command is a shell loop over the subdirectories, like this:
SUBDIRS = foo bar baz subdirs: for dir in $(SUBDIRS); do \ $(MAKE) -C $$dir; \ doneThere are a few problems with this method, however. First, any error detected in a submake is not noted by this rule, so it will continue to build the rest of the directories even when one fails. This can be overcome by adding shell commands to note the error and exit, but then it will do so even if
make
is invoked with the-k
option, which is unfortunate. Second, and perhaps more importantly, not take advantage of the parallel build capabilities of make using this method, since there is only one rule.By declaring the subdirectories as phony targets (you must do this as the subdirectory obviously always exists; otherwise it won't be built) remove these problems:
SUBDIRS = foo bar baz .PHONY: subdirs $(SUBDIRS) subdirs: $(SUBDIRS) $(SUBDIRS): $(MAKE) -C $@ foo: bazHere we've also declared that the foo subdirectory cannot be built until after the baz subdirectory is complete; this kind of relationship declaration is particularly important when attempting parallel builds.
A phony target should not be a prerequisite of a real target file; if it is, its commands are run every time
make
goes to update that file. As long as a phony target is never a prerequisite of a real target, the phony target commands will be executed only when the phony target is a specified goal (see section Arguments to Specify the Goals).Phony targets can have prerequisites. When one directory contains multiple programs, it is most convenient to describe all of the programs in one makefile ./Makefile. Since the target remade by default will be the first one in the makefile, it is common to make this a phony target named all and give it, as prerequisites, all the individual programs. For example:
all : prog1 prog2 prog3 .PHONY : all prog1 : prog1.o utils.o cc -o prog1 prog1.o utils.o prog2 : prog2.o cc -o prog2 prog2.o prog3 : prog3.o sort.o utils.o cc -o prog3 prog3.o sort.o utils.oNow say just make to remake all three programs, or specify as arguments the ones to remake (as in make prog1 prog3).
When one phony target is a prerequisite of another, it serves as a subroutine of the other. For example, here make cleanall will delete the object files, the difference files, and the file program:
.PHONY: cleanall cleanobj cleandiff cleanall : cleanobj cleandiff rm program cleanobj : rm *.o cleandiff : rm *.diff
< > << Up >> Top Contents index ? 4.7 Rules without Commands or Prerequisites
If a rule has no prerequisites or commands, and the target of the rule is a nonexistent file, then
make
imagines this target to have been updated whenever its rule is run. This implies that all targets depending on this one will always have their commands run.An example will illustrate this:
clean: FORCE rm $(objects) FORCE:Here the target FORCE satisfies the special conditions, so the target clean that depends on it is forced to run its commands. There is nothing special about the name FORCE, but that is one name commonly used this way.
As see, using FORCE this way has the same results as using .PHONY: clean.
Using .PHONY is more explicit and more efficient. However, other versions of
make
do not support .PHONY; thus FORCE appears in many makefiles. See section 4.6 Phony Targets.
< > << Up >> Top Contents index ? 4.8 Empty Target Files to Record Events
The empty target is a variant of the phony target; it is used to hold commands for an action that you request explicitly from time to time. Unlike a phony target, this target file can really exist; but the file's contents do not matter, and usually are empty.
The purpose of the empty target file is to record, with its last-modification time, when the rule's commands were last executed. It does so because one of the commands is a
touch
command to update the target file.The empty target file should have some prerequisites (otherwise it doesn't make sense). When you ask to remake the empty target, the commands are executed if any prerequisite is more recent than the target; in other words, if a prerequisite has changed since the last time you remade the target. Here is an example:
print: foo.c bar.c lpr -p $? touch printWith this rule, make print will execute the
lpr
command if either source file has changed since the last make print. The automatic variable $? is used to print only those files that have changed (see section Automatic Variables).
< > << Up >> Top Contents index ? 4.9 Special Built-in Target Names
Certain names have special meanings if they appear as targets.
.PHONY
The prerequisites of the special target
.PHONY
are considered to be phony targets. When it is time to consider such a target,make
will run its commands unconditionally, regardless of whether a file with that name exists or what its last-modification time is. See section Phony Targets..SUFFIXES
The prerequisites of the special target
.SUFFIXES
are the list of suffixes to be used in checking for suffix rules. See section Old-Fashioned Suffix Rules..DEFAULT
The commands specified for
.DEFAULT
are used for any target for which no rules are found (either explicit rules or implicit rules). See section 10.6 Defining Last-Resort Default Rules. If.DEFAULT
commands are specified, every file mentioned as a prerequisite, but not as a target in a rule, will have these commands executed on its behalf. See section Implicit Rule Search Algorithm..PRECIOUS
The targets which
.PRECIOUS
depends on are given the following special treatment: ifmake
is killed or interrupted during the execution of their commands, the target is not deleted. See section Interrupting or Killingmake
. Also, if the target is an intermediate file, it will not be deleted after it is no longer needed, as is normally done. See section Chains of Implicit Rules. In this latter respect it overlaps with the.SECONDARY
special target.also list the target pattern of an implicit rule (such as %.o) as a prerequisite file of the special target
.PRECIOUS
to preserve intermediate files created by rules whose target patterns match that file's name..INTERMEDIATE
The targets which
.INTERMEDIATE
depends on are treated as intermediate files. See section Chains of Implicit Rules..INTERMEDIATE
with no prerequisites has no effect..SECONDARY
The targets which
.SECONDARY
depends on are treated as intermediate files, except that they are never automatically deleted. See section Chains of Implicit Rules.
.SECONDARY
with no prerequisites causes all targets to be treated as secondary (i.e., no target is removed because it is considered intermediate)..DELETE_ON_ERROR
If
.DELETE_ON_ERROR
is mentioned as a target anywhere in the makefile, thenmake
will delete the target of a rule if it has changed and its commands exit with a nonzero exit status, just as it does when it receives a signal. See section Errors in Commands..IGNORE
If you specify prerequisites for
.IGNORE
, thenmake
will ignore errors in execution of the commands run for those particular files. The commands for.IGNORE
are not meaningful.If mentioned as a target with no prerequisites,
.IGNORE
says to ignore errors in execution of commands for all files. This usage of .IGNORE is supported only for historical compatibility. Since this affects every command in the makefile, it is not very useful; we recommend you use the more selective ways to ignore errors in specific commands. See section Errors in Commands..LOW_RESOLUTION_TIME
If you specify prerequisites for
.LOW_RESOLUTION_TIME
,make
assumes that these files are created by commands that generate low resolution time stamps. The commands for.LOW_RESOLUTION_TIME
are not meaningful.The high resolution file time stamps of many modern hosts lessen the chance of
make
incorrectly concluding that a file is up to date. Unfortunately, these hosts provide no way to set a high resolution file time stamp, so commands like cp -p that explicitly set a file's time stamp must discard its subsecond part. If a file is created by such a command, you should list it as a prerequisite of.LOW_RESOLUTION_TIME
so thatmake
does not mistakenly conclude that the file is out of date. For example:
.LOW_RESOLUTION_TIME: dst dst: src cp -p src dstSince cp -p discards the subsecond part of src's time stamp, dst is typically slightly older than src even when it is up to date. The
.LOW_RESOLUTION_TIME
line causesmake
to consider dst to be up to date if its time stamp is at the start of the same second that src's time stamp is in.Due to a limitation of the archive format, archive member time stamps are always low resolution. You need not list archive members as prerequisites of
.LOW_RESOLUTION_TIME
, asmake
does this automatically..SILENT
If you specify prerequisites for
.SILENT
, thenmake
will not print the commands to remake those particular files before executing them. The commands for.SILENT
are not meaningful.If mentioned as a target with no prerequisites,
.SILENT
says not to print any commands before executing them. This usage of .SILENT is supported only for historical compatibility. We recommend you use the more selective ways to silence specific commands. See section Command Echoing. If you want to silence all commands for a particular run ofmake
, use the -s or --silent option (see section 9.7 Summary of Options)..EXPORT_ALL_VARIABLES
Simply by being mentioned as a target, this tells
make
to export all variables to child processes by default. See section Communicating Variables to a Sub-make
..NOTPARALLEL
If
.NOTPARALLEL
is mentioned as a target, then this invocation ofmake
will be run serially, even if the -j option is given. Any recursively invokedmake
command will still be run in parallel (unless its makefile contains this target). Any prerequisites on this target are ignored.Any defined implicit rule suffix also counts as a special target if it appears as a target, and so does the concatenation of two suffixes, such as .c.o. These targets are suffix rules, an obsolete way of defining implicit rules (but a way still widely used). In principle, any target name could be special in this way if you break it in two and add both pieces to the suffix list. In practice, suffixes normally begin with ., so these special target names also begin with .. See section Old-Fashioned Suffix Rules.
< > << Up >> Top Contents index ? 4.10 Multiple Targets in a Rule
A rule with multiple targets is equivalent to writing many rules, each with one target, and all identical aside from that. The same commands apply to all the targets, but their effects may vary because substitute the actual target name into the command using $@. The rule contributes the same prerequisites to all the targets also.
This is useful in two cases.
- You want just prerequisites, no commands. For example:
kbd.o command.o files.o: command.hgives an additional prerequisite to each of the three object files mentioned.
- Similar commands work for all the targets. The commands do not need to be absolutely identical, since the automatic variable $@ can be used to substitute the particular target to be remade into the commands (see section Automatic Variables). For example:
bigoutput littleoutput : text.g generate text.g -$(subst output,,$@) > $@is equivalent to
bigoutput : text.g generate text.g -big > bigoutput littleoutput : text.g generate text.g -little > littleoutputHere we assume the hypothetical program
generate
makes two types of output, one if given -big and one if given -little. See section Functions for String Substitution and Analysis, for an explanation of thesubst
function.Suppose you would like to vary the prerequisites according to the target, much as the variable $@ allows you to vary the commands. not do this with multiple targets in an ordinary rule, but you can do it with a static pattern rule. See section Static Pattern Rules.
< > << Up >> Top Contents index ? 4.11 Multiple Rules for One Target
One file can be the target of several rules. All the prerequisites mentioned in all the rules are merged into one list of prerequisites for the target. If the target is older than any prerequisite from any rule, the commands are executed.
There can only be one set of commands to be executed for a file. If more than one rule gives commands for the same file,
make
uses the last set given and prints an error message. (As a special case, if the file's name begins with a dot, no error message is printed. This odd behavior is only for compatibility with other implementations ofmake
... you should avoid using it). Occasionally it is useful to have the same target invoke multiple commands which are defined in different parts of your makefile; use double-colon rules (see section 4.13 Double-Colon Rules) for this.An extra rule with just prerequisites can be used to give a few extra prerequisites to many files at once. For example, makefiles often have a variable, such as
objects
, containing a list of all the compiler output files in the system being made. An easy way to say that all of them must be recompiled if config.h changes is to write the following:
objects = foo.o bar.o foo.o : defs.h bar.o : defs.h test.h $(objects) : config.hThis could be inserted or taken out without changing the rules that really specify how to make the object files, making it a convenient form to use if you wish to add the additional prerequisite intermittently.
Another wrinkle is that the additional prerequisites could be specified with a variable that you set with a command argument to
make
(see section Overriding Variables). For example,
extradeps= $(objects) : $(extradeps)means that the command make extradeps=foo.h will consider foo.h as a prerequisite of each object file, but plain make will not.
If none of the explicit rules for a target has commands, then
make
searches for an applicable implicit rule to find some commands see section Using Implicit Rules).
< > << Up >> Top Contents index ? 4.12 Static Pattern Rules
Static pattern rules are rules which specify multiple targets and construct the prerequisite names for each target based on the target name. They are more general than ordinary rules with multiple targets because the targets do not have to have identical prerequisites. Their prerequisites must be analogous, but not necessarily identical.
4.12.1 Syntax of Static Pattern Rules The syntax of static pattern rules. 4.12.2 Static Pattern Rules versus Implicit Rules When are they better than implicit rules?
< > << Up >> Top Contents index ? 4.12.1 Syntax of Static Pattern Rules
Here is the syntax of a static pattern rule:
targets ...: target-pattern: prereq-patterns ... commands ...The targets list specifies the targets that the rule applies to. The targets can contain wildcard characters, just like the targets of ordinary rules (see section Using Wildcard Characters in File Names).
The target-pattern and prereq-patterns say how to compute the prerequisites of each target. Each target is matched against the target-pattern to extract a part of the target name, called the stem. This stem is substituted into each of the prereq-patterns to make the prerequisite names (one from each prereq-pattern).
Each pattern normally contains the character % just once. When the target-pattern matches a target, the % can match any part of the target name; this part is called the stem. The rest of the pattern must match exactly. For example, the target foo.o matches the pattern %.o, with foo as the stem. The targets foo.c and foo.out do not match that pattern.
The prerequisite names for each target are made by substituting the stem for the % in each prerequisite pattern. For example, if one prerequisite pattern is %.c, then substitution of the stem foo gives the prerequisite name foo.c. It is legitimate to write a prerequisite pattern that does not contain %; then this prerequisite is the same for all targets.
% characters in pattern rules can be quoted with preceding backslashes (\). Backslashes that would otherwise quote % characters can be quoted with more backslashes. Backslashes that quote % characters or other backslashes are removed from the pattern before it is compared to file names or has a stem substituted into it. Backslashes that are not in danger of quoting % characters go unmolested. For example, the pattern the\%weird\\%pattern\\ has the%weird\ preceding the operative % character, and pattern\\ following it. The final two backslashes are left alone because they cannot affect any % character.
Here is an example, which compiles each of foo.o and bar.o from the corresponding .c file:
objects = foo.o bar.o all: $(objects) $(objects): %.o: %.c $(CC) -c $(CFLAGS) $< -o $@Here $< is the automatic variable that holds the name of the prerequisite and $@ is the automatic variable that holds the name of the target; see Automatic Variables.
Each target specified must match the target pattern; a warning is issued for each target that does not. If you have a list of files, only some of which will match the pattern, use the
filter
function to remove nonmatching file names (see section Functions for String Substitution and Analysis):
files = foo.elc bar.o lose.o $(filter %.o,$(files)): %.o: %.c $(CC) -c $(CFLAGS) $< -o $@ $(filter %.elc,$(files)): %.elc: %.el emacs -f batch-byte-compile $<In this example the result of $(filter %.o,$(files)) is bar.o lose.o, and the first static pattern rule causes each of these object files to be updated by compiling the corresponding C source file. The result of $(filter %.elc,$(files)) is foo.elc, so that file is made from foo.el.
Another example shows how to use
$*
in static pattern rules:
bigoutput littleoutput : %output : text.g generate text.g -$* > $@When the
generate
command is run,$*
will expand to the stem, either big or little.
< > << Up >> Top Contents index ? 4.12.2 Static Pattern Rules versus Implicit Rules
A static pattern rule has much in common with an implicit rule defined as a pattern rule (see section Defining and Redefining Pattern Rules). Both have a pattern for the target and patterns for constructing the names of prerequisites. The difference is in how
make
decides when the rule applies.An implicit rule can apply to any target that matches its pattern, but it does apply only when the target has no commands otherwise specified, and only when the prerequisites can be found. If more than one implicit rule appears applicable, only one applies; the choice depends on the order of rules.
By contrast, a static pattern rule applies to the precise list of targets that you specify in the rule. It cannot apply to any other target and it invariably does apply to each of the targets specified. If two conflicting rules apply, and both have commands, that's an error.
The static pattern rule can be better than an implicit rule for these reasons:
- You may wish to override the usual implicit rule for a few files whose names cannot be categorized syntactically but can be given in an explicit list.
- If not be sure of the precise contents of the directories you are using, you may not be sure which other irrelevant files might lead
make
to use the wrong implicit rule. The choice might depend on the order in which the implicit rule search is done. With static pattern rules, there is no uncertainty: each rule applies to precisely the targets specified.
< > << Up >> Top Contents index ? 4.13 Double-Colon Rules
Double-colon rules are rules written with :: instead of : after the target names. They are handled differently from ordinary rules when the same target appears in more than one rule.
When a target appears in multiple rules, all the rules must be the same type: all ordinary, or all double-colon. If they are double-colon, each of them is independent of the others. Each double-colon rule's commands are executed if the target is older than any prerequisites of that rule. If there are no prerequisites for that rule, its commands are always executed (even if the target already exists). This can result in executing none, any, or all of the double-colon rules.
Double-colon rules with the same target are in fact completely separate from one another. Each double-colon rule is processed individually, just as rules with different targets are processed.
The double-colon rules for a target are executed in the order they appear in the makefile. However, the cases where double-colon rules really make sense are those where the order of executing the commands would not matter.
Double-colon rules are somewhat obscure and not often very useful; they provide a mechanism for cases in which the method used to update a target differs depending on which prerequisite files caused the update, and such cases are rare.
Each double-colon rule should specify commands; if it does not, an implicit rule will be used if one applies. See section Using Implicit Rules.
< > << Up >> Top Contents index ? 4.14 Generating Prerequisites Automatically
In the makefile for a program, many of the rules you need to write often say only that some object file depends on some header file. For example, if main.c uses defs.h via an
#include
, you would write:
main.o: defs.hYou need this rule so that
make
knows that it must remake main.o whenever defs.h changes. see that for a large program you would have to write dozens of such rules in your makefile. And, you must always be very careful to update the makefile every time you add or remove an#include
.To avoid this hassle, most modern C compilers can write these rules for you, by looking at the
#include
lines in the source files. Usually this is done with the -M option to the compiler. For example, the command:
cc -M main.cgenerates the output:
main.o : main.c defs.hThus you no longer have to write all those rules yourself. The compiler will do it for you.
Note that such a prerequisite constitutes mentioning main.o in a makefile, so it can never be considered an intermediate file by implicit rule search. This means that
make
won't ever remove the file after using it; see section Chains of Implicit Rules.With old
make
programs, it was traditional practice to use this compiler feature to generate prerequisites on demand with a command like make depend. That command would create a file depend containing all the automatically-generated prerequisites; then the makefile could useinclude
to read them in (see section 3.3 Including Other Makefiles).In GNU
make
, the feature of remaking makefiles makes this practice obsolete--you need never tellmake
explicitly to regenerate the prerequisites, because it always regenerates any makefile that is out of date. See section 3.7 How Makefiles Are Remade.The practice we recommend for automatic prerequisite generation is to have one makefile corresponding to each source file. For each source file name.c there is a makefile name.d which lists what files the object file name.o depends on. That way only the source files that have changed need to be rescanned to produce the new prerequisites.
Here is the pattern rule to generate a file of prerequisites (i.e., a makefile) called name.d from a C source file called name.c:
%.d: %.c @set -e; rm -f $@; \ $(CC) -M $(CPPFLAGS) $< > $@.$$$$; \ sed 's,\($*\)\.o[ :]*,\1.o $@ : ,g' < $@.$$$$ > $@; \ rm -f $@.$$$$See section 10.5 Defining and Redefining Pattern Rules, for information on defining pattern rules. The -e flag to the shell causes it to exit immediately if the
$(CC)
command (or any other command) fails (exits with a nonzero status).With the GNU C compiler, you may wish to use the -MM flag instead of -M. This omits prerequisites on system header files. See section `Options Controlling the Preprocessor' in Using GNU CC, for details.
The purpose of the
sed
command is to translate (for example):
main.o : main.c defs.hinto:
main.o main.d : main.c defs.hThis makes each .d file depend on all the source and header files that the corresponding .o file depends on.
make
then knows it must regenerate the prerequisites whenever any of the source or header files changes.Once you've defined the rule to remake the .d files, you then use the
include
directive to read them all in. See section 3.3 Including Other Makefiles. For example:
sources = foo.c bar.c include $(sources:.c=.d)(This example uses a substitution variable reference to translate the list of source files foo.c bar.c into a list of prerequisite makefiles, foo.d bar.d. See section 6.3.1 Substitution References, for full information on substitution references.) Since the .d files are makefiles like any others,
make
will remake them as necessary with no further work from you. See section 3.7 How Makefiles Are Remade.Note that the .d files contain target definitions; you should be sure to place the
include
directive after the first, default target in your makefiles or run the risk of having a random object file become the default target. See section 2.3 Howmake
Processes a Makefile.
< > << Up >> Top Contents index ? 5. Writing the Commands in Rules
The commands of a rule consist of shell command lines to be executed one by one. Each command line must start with a tab, except that the first command line may be attached to the target-and-prerequisites line with a semicolon in between. Blank lines and lines of just comments may appear among the command lines; they are ignored. (But beware, an apparently "blank" line that begins with a tab is not blank! It is an empty command; see section 5.8 Using Empty Commands.)
Users use many different shell programs, but commands in makefiles are always interpreted by /bin/sh unless the makefile specifies otherwise. See section Command Execution.
The shell that is in use determines whether comments can be written on command lines, and what syntax they use. When the shell is /bin/sh, a # starts a comment that extends to the end of the line. The # does not have to be at the beginning of a line. Text on a line before a # is not part of the comment.
5.1 Command Echoing control when commands are echoed. 5.2 Command Execution How commands are executed. 5.3 Parallel Execution How commands can be executed in parallel. 5.4 Errors in Commands What happens after a command execution error. 5.5 Interrupting or Killing make
What happens when a command is interrupted. 5.6 Recursive Use of make
Invoking make
from makefiles.5.7 Defining Canned Command Sequences Defining canned sequences of commands. 5.8 Using Empty Commands Defining useful, do-nothing commands.
< > << Up >> Top Contents index ? 5.1 Command Echoing
Normally
make
prints each command line before it is executed. We call this echoing because it gives the appearance that you are typing the commands yourself.When a line starts with @, the echoing of that line is suppressed. The @ is discarded before the command is passed to the shell. Typically you would use this for a command whose only effect is to print something, such as an
echo
command to indicate progress through the makefile:
@echo About to make distribution filesWhen
make
is given the flag -n or --just-print it only echoes commands, it won't execute them. See section Summary of Options. In this case and only this case, even the commands starting with @ are printed. This flag is useful for finding out which commandsmake
thinks are necessary without actually doing them.The -s or --silent flag to
make
prevents all echoing, as if all commands started with @. A rule in the makefile for the special target.SILENT
without prerequisites has the same effect (see section Special Built-in Target Names)..SILENT
is essentially obsolete since @ is more flexible.
< > << Up >> Top Contents index ? 5.2 Command Execution
When it is time to execute commands to update a target, they are executed by making a new subshell for each line. (In practice,
make
may take shortcuts that do not affect the results.)Please note: this implies that shell commands such as
cd
that set variables local to each process will not affect the following command lines. (2) If you want to usecd
to affect the next command, put the two on a single line with a semicolon between them. Thenmake
will consider them a single command and pass them, together, to a shell which will execute them in sequence. For example:
foo : bar/lose cd bar; gobble lose > ../fooIf you would like to split a single shell command into multiple lines of text, you must use a backslash at the end of all but the last subline. Such a sequence of lines is combined into a single line, by deleting the backslash-newline sequences, before passing it to the shell. Thus, the following is equivalent to the preceding example:
foo : bar/lose cd bar; \ gobble lose > ../fooThe program used as the shell is taken from the variable
SHELL
. By default, the program /bin/sh is used.On MS-DOS, if
SHELL
is not set, the value of the variableCOMSPEC
(which is always set) is used instead.The processing of lines that set the variable
SHELL
in Makefiles is different on MS-DOS. The stock shell, command.com, is ridiculously limited in its functionality and many users ofmake
tend to install a replacement shell. Therefore, on MS-DOS,make
examines the value ofSHELL
, and changes its behavior based on whether it points to a Unix-style or DOS-style shell. This allows reasonable functionality even ifSHELL
points to command.com.If
SHELL
points to a Unix-style shell,make
on MS-DOS additionally checks whether that shell can indeed be found; if not, it ignores the line that setsSHELL
. In MS-DOS, GNUmake
searches for the shell in the following places:
- In the precise place pointed to by the value of
SHELL
. For example, if the makefile specifies SHELL = /bin/sh,make
will look in the directory /bin on the current drive.
- In the current directory.
- In each of the directories in the
PATH
variable, in order.
In every directory it examines,
make
will first look for the specific file (sh in the example above). If this is not found, it will also look in that directory for that file with one of the known extensions which identify executable files. For example .exe, .com, .bat, .btm, .sh, and some others.If any of these attempts is successful, the value of
SHELL
will be set to the full pathname of the shell as found. However, if none of these is found, the value ofSHELL
will not be changed, and thus the line that sets it will be effectively ignored. This is somake
will only support features specific to a Unix-style shell if such a shell is actually installed on the system wheremake
runs.Note that this extended search for the shell is limited to the cases where
SHELL
is set from the Makefile; if it is set in the environment or command line, you are expected to set it to the full pathname of the shell, exactly as things are on Unix.The effect of the above DOS-specific processing is that a Makefile that says SHELL = /bin/sh (as many Unix makefiles do), will work on MS-DOS unaltered if you have e.g. sh.exe installed in some directory along your
PATH
.Unlike most variables, the variable
SHELL
is never set from the environment. This is because theSHELL
environment variable is used to specify your personal choice of shell program for interactive use. It would be very bad for personal choices like this to affect the functioning of makefiles. See section Variables from the Environment. However, on MS-DOS and MS-Windows the value ofSHELL
in the environment is used, since on those systems most users do not set this variable, and therefore it is most likely set specifically to be used bymake
. On MS-DOS, if the setting ofSHELL
is not suitable formake
, set the variableMAKESHELL
to the shell thatmake
should use; this will override the value ofSHELL
.
< > << Up >> Top Contents index ? 5.3 Parallel Execution
GNU
make
knows how to execute several commands at once. Normally,make
will execute only one command at a time, waiting for it to finish before executing the next. However, the -j or --jobs option tellsmake
to execute many commands simultaneously.On MS-DOS, the -j option has no effect, since that system doesn't support multi-processing.
If the -j option is followed by an integer, this is the number of commands to execute at once; this is called the number of job slots. If there is nothing looking like an integer after the -j option, there is no limit on the number of job slots. The default number of job slots is one, which means serial execution (one thing at a time).
One unpleasant consequence of running several commands simultaneously is that output generated by the commands appears whenever each command sends it, so messages from different commands may be interspersed.
Another problem is that two processes cannot both take input from the same device; so to make sure that only one command tries to take input from the terminal at once,
make
will invalidate the standard input streams of all but one running command. This means that attempting to read from standard input will usually be a fatal error (a Broken pipe signal) for most child processes if there are several.It is unpredictable which command will have a valid standard input stream (which will come from the terminal, or wherever you redirect the standard input of
make
). The first command run will always get it first, and the first command started after that one finishes will get it next, and so on.We will change how this aspect of
make
works if we find a better alternative. In the mean time, you should not rely on any command using standard input at all if you are using the parallel execution feature; but if you are not using this feature, then standard input works normally in all commands.Finally, handling recursive
make
invocations raises issues. For more information on this, see Communicating Options to a Sub-make
.If a command fails (is killed by a signal or exits with a nonzero status), and errors are not ignored for that command (see section Errors in Commands), the remaining command lines to remake the same target will not be run. If a command fails and the -k or --keep-going option was not given (see section Summary of Options),
make
aborts execution. If make terminates for any reason (including a signal) with child processes running, it waits for them to finish before actually exiting.When the system is heavily loaded, you will probably want to run fewer jobs than when it is lightly loaded. use the -l option to tell
make
to limit the number of jobs to run at once, based on the load average. The -l or --max-load option is followed by a floating-point number. For example,
-l 2.5will not let
make
start more than one job if the load average is above 2.5. The -l option with no following number removes the load limit, if one was given with a previous -l option.More precisely, when
make
goes to start up a job, and it already has at least one job running, it checks the current load average; if it is not lower than the limit given with -l,make
waits until the load average goes below that limit, or until all the other jobs finish.By default, there is no load limit.
< > << Up >> Top Contents index ? 5.4 Errors in Commands
After each shell command returns,
make
looks at its exit status. If the command completed successfully, the next command line is executed in a new shell; after the last command line is finished, the rule is finished.If there is an error (the exit status is nonzero),
make
gives up on the current rule, and perhaps on all rules.Sometimes the failure of a certain command does not indicate a problem. For example, you may use the
mkdir
command to ensure that a directory exists. If the directory already exists,mkdir
will report an error, but you probably wantmake
to continue regardless.To ignore errors in a command line, write a - at the beginning of the line's text (after the initial tab). The - is discarded before the command is passed to the shell for execution.
For example,
clean: -rm -f *.oThis causes
rm
to continue even if it is unable to remove a file.When you run
make
with the -i or --ignore-errors flag, errors are ignored in all commands of all rules. A rule in the makefile for the special target.IGNORE
has the same effect, if there are no prerequisites. These ways of ignoring errors are obsolete because - is more flexible.When errors are to be ignored, because of either a - or the -i flag,
make
treats an error return just like success, except that it prints out a message that tells you the status code the command exited with, and says that the error has been ignored.When an error happens that
make
has not been told to ignore, it implies that the current target cannot be correctly remade, and neither can any other that depends on it either directly or indirectly. No further commands will be executed for these targets, since their preconditions have not been achieved.Normally
make
gives up immediately in this circumstance, returning a nonzero status. However, if the -k or --keep-going flag is specified,make
continues to consider the other prerequisites of the pending targets, remaking them if necessary, before it gives up and returns nonzero status. For example, after an error in compiling one object file, make -k will continue compiling other object files even though it already knows that linking them will be impossible. See section Summary of Options.The usual behavior assumes that your purpose is to get the specified targets up to date; once
make
learns that this is impossible, it might as well report the failure immediately. The -k option says that the real purpose is to test as many of the changes made in the program as possible, perhaps to find several independent problems so that correct them all before the next attempt to compile. This is why Emacs'compile
command passes the -k flag by default.Usually when a command fails, if it has changed the target file at all, the file is corrupted and cannot be used--or at least it is not completely updated. Yet the file's time stamp says that it is now up to date, so the next time
make
runs, it will not try to update that file. The situation is just the same as when the command is killed by a signal; see section 5.5 Interrupting or Killingmake
. So generally the right thing to do is to delete the target file if the command fails after beginning to change the file.make
will do this if.DELETE_ON_ERROR
appears as a target. This is almost always what you wantmake
to do, but it is not historical practice; so for compatibility, you must explicitly request it.
< > << Up >> Top Contents index ? 5.5 Interrupting or Killing
make
If
make
gets a fatal signal while a command is executing, it may delete the target file that the command was supposed to update. This is done if the target file's last-modification time has changed sincemake
first checked it.The purpose of deleting the target is to make sure that it is remade from scratch when
make
is next run. Why is this? Suppose you type Ctrl-c while a compiler is running, and it has begun to write an object file foo.o. The Ctrl-c kills the compiler, resulting in an incomplete file whose last-modification time is newer than the source file foo.c. Butmake
also receives the Ctrl-c signal and deletes this incomplete file. Ifmake
did not do this, the next invocation ofmake
would think that foo.o did not require updating--resulting in a strange error message from the linker when it tries to link an object file half of which is missing.prevent the deletion of a target file in this way by making the special target
.PRECIOUS
depend on it. Before remaking a target,make
checks to see whether it appears on the prerequisites of.PRECIOUS
, and thereby decides whether the target should be deleted if a signal happens. Some reasons why you might do this are that the target is updated in some atomic fashion, or exists only to record a modification-time (its contents do not matter), or must exist at all times to prevent other sorts of trouble.
< > << Up >> Top Contents index ? 5.6 Recursive Use of
make
Recursive use of
make
means usingmake
as a command in a makefile. This technique is useful when you want separate makefiles for various subsystems that compose a larger system. For example, suppose you have a subdirectory subdir which has its own makefile, and you would like the containing directory's makefile to runmake
on the subdirectory. do it by writing this:
subsystem: cd subdir && $(MAKE)or, equivalently, this (see section Summary of Options):
subsystem: $(MAKE) -C subdirwrite recursive
make
commands just by copying this example, but there are many things to know about how they work and why, and about how the sub-make
relates to the top-levelmake
. You may also find it useful to declare targets that invoke recursivemake
commands as .PHONY (for more discussion on when this is useful, see 4.6 Phony Targets).For your convenience, GNU
make
sets the variableCURDIR
to the pathname of the current working directory for you. If-C
is in effect, it will contain the path of the new directory, not the original. The value has the same precedence it would have if it were set in the makefile (by default, an environment variableCURDIR
will not override this value). Note that setting this variable has no effect on the operation ofmake
5.6.1 How the MAKE
Variable WorksThe special effects of using $(MAKE). 5.6.2 Communicating Variables to a Sub- make
communicate variables to a sub- make
.5.6.3 Communicating Options to a Sub- make
communicate options to a sub- make
.5.6.4 The --print-directory Option How the -w or --print-directory option helps debug use of recursive make
commands.
< > << Up >> Top Contents index ? 5.6.1 How the
MAKE
Variable WorksRecursive
make
commands should always use the variableMAKE
, not the explicit command name make, as shown here:
subsystem: cd subdir && $(MAKE)The value of this variable is the file name with which
make
was invoked. If this file name was /bin/make, then the command executed is cd subdir && /bin/make. If you use a special version ofmake
to run the top-level makefile, the same special version will be executed for recursive invocations.As a special feature, using the variable
MAKE
in the commands of a rule alters the effects of the -t (--touch), -n (--just-print), or -q (--question) option. Using theMAKE
variable has the same effect as using a + character at the beginning of the command line. See section Instead of Executing the Commands.Consider the command make -t in the above example. (The -t option marks targets as up to date without actually running any commands; see 9.3 Instead of Executing the Commands.) Following the usual definition of -t, a make -t command in the example would create a file named subsystem and do nothing else. What you really want it to do is run cd subdir && make -t; but that would require executing the command, and -t says not to execute commands.
The special feature makes this do what you want: whenever a command line of a rule contains the variable
MAKE
, the flags -t, -n and -q do not apply to that line. Command lines containingMAKE
are executed normally despite the presence of a flag that causes most commands not to be run. The usualMAKEFLAGS
mechanism passes the flags to the sub-make
(see section Communicating Options to a Sub-make
), so your request to touch the files, or print the commands, is propagated to the subsystem.
< > << Up >> Top Contents index ? 5.6.2 Communicating Variables to a Sub-
make
Variable values of the top-level
make
can be passed to the sub-make
through the environment by explicit request. These variables are defined in the sub-make
as defaults, but do not override what is specified in the makefile used by the sub-make
makefile unless you use the -e switch (see section Summary of Options).To pass down, or export, a variable,
make
adds the variable and its value to the environment for running each command. The sub-make
, in turn, uses the environment to initialize its table of variable values. See section Variables from the Environment.Except by explicit request,
make
exports a variable only if it is either defined in the environment initially or set on the command line, and if its name consists only of letters, numbers, and underscores. Some shells cannot cope with environment variable names consisting of characters other than letters, numbers, and underscores.The special variables
SHELL
andMAKEFLAGS
are always exported (unless you unexport them).MAKEFILES
is exported if you set it to anything.
make
automatically passes down variable values that were defined on the command line, by putting them in theMAKEFLAGS
variable. See section 5.6.3 Communicating Options to a Sub-make
.Variables are not normally passed down if they were created by default by
make
(see section Variables Used by Implicit Rules). The sub-make
will define these for itself.If you want to export specific variables to a sub-
make
, use theexport
directive, like this:
export variable ...If you want to prevent a variable from being exported, use the
unexport
directive, like this:
unexport variable ...In both of these forms, the arguments to
export
andunexport
are expanded, and so could be variables or functions which expand to a (list of) variable names to be (un)exported.As a convenience, define a variable and export it at the same time by doing:
export variable = valuehas the same result as:
variable = value export variableand
export variable := valuehas the same result as:
variable := value export variableLikewise,
export variable += valueis just like:
variable += value export variableSee section Appending More Text to Variables.
You may notice that the
export
andunexport
directives work inmake
in the same way they work in the shell,sh
.If you want all variables to be exported by default, use
export
by itself:
exportThis tells
make
that variables which are not explicitly mentioned in anexport
orunexport
directive should be exported. Any variable given in anunexport
directive will still not be exported. If you useexport
by itself to export variables by default, variables whose names contain characters other than alphanumerics and underscores will not be exported unless specifically mentioned in anexport
directive.The behavior elicited by an
export
directive by itself was the default in older versions of GNUmake
. If your makefiles depend on this behavior and you want to be compatible with old versions ofmake
, write a rule for the special target.EXPORT_ALL_VARIABLES
instead of using theexport
directive. This will be ignored by oldmake
s, while theexport
directive will cause a syntax error.Likewise, use
unexport
by itself to tellmake
not to export variables by default. Since this is the default behavior, you would only need to do this ifexport
had been used by itself earlier (in an included makefile, perhaps). You cannot useexport
andunexport
by themselves to have variables exported for some commands and not for others. The lastexport
orunexport
directive that appears by itself determines the behavior for the entire run ofmake
.As a special feature, the variable
MAKELEVEL
is changed when it is passed down from level to level. This variable's value is a string which is the depth of the level as a decimal number. The value is 0 for the top-levelmake
; 1 for a sub-make
, 2 for a sub-sub-make
, and so on. The incrementation happens whenmake
sets up the environment for a command.The main use of
MAKELEVEL
is to test it in a conditional directive (see section Conditional Parts of Makefiles); this way write a makefile that behaves one way if run recursively and another way if run directly by you.use the variable
MAKEFILES
to cause all sub-make
commands to use additional makefiles. The value ofMAKEFILES
is a whitespace-separated list of file names. This variable, if defined in the outer-level makefile, is passed down through the environment; then it serves as a list of extra makefiles for the sub-make
to read before the usual or specified ones. See section The VariableMAKEFILES
.
< > << Up >> Top Contents index ? 5.6.3 Communicating Options to a Sub-
make
Flags such as -s and -k are passed automatically to the sub-
make
through the variableMAKEFLAGS
. This variable is set up automatically bymake
to contain the flag letters thatmake
received. Thus, if you do make -ks thenMAKEFLAGS
gets the value ks.As a consequence, every sub-
make
gets a value forMAKEFLAGS
in its environment. In response, it takes the flags from that value and processes them as if they had been given as arguments. See section Summary of Options.Likewise variables defined on the command line are passed to the sub-
make
throughMAKEFLAGS
. Words in the value ofMAKEFLAGS
that contain =,make
treats as variable definitions just as if they appeared on the command line. See section Overriding Variables.The options -C, -f, -o, and -W are not put into
MAKEFLAGS
; these options are not passed down.The -j option is a special case (see section Parallel Execution). If you set it to some numeric value N and your operating system supports it (most any UNIX system will; others typically won't), the parent
make
and all the sub-make
s will communicate to ensure that there are only N jobs running at the same time between them all. Note that any job that is marked recursive (see section Instead of Executing the Commands) doesn't count against the total jobs (otherwise we could get N sub-make
s running and have no slots left over for any real work!)If your operating system doesn't support the above communication, then -j 1 is always put into
MAKEFLAGS
instead of the value you specified. This is because if the -j option were passed down to sub-make
s, you would get many more jobs running in parallel than you asked for. If you give -j with no numeric argument, meaning to run as many jobs as possible in parallel, this is passed down, since multiple infinities are no more than one.If you do not want to pass the other flags down, you must change the value of
MAKEFLAGS
, like this:
subsystem: cd subdir && $(MAKE) MAKEFLAGS=The command line variable definitions really appear in the variable
MAKEOVERRIDES
, andMAKEFLAGS
contains a reference to this variable. If you do want to pass flags down normally, but don't want to pass down the command line variable definitions, resetMAKEOVERRIDES
to empty, like this:
MAKEOVERRIDES =This is not usually useful to do. However, some systems have a small fixed limit on the size of the environment, and putting so much information into the value of
MAKEFLAGS
can exceed it. If you see the error message Arg list too long, this may be the problem. (For strict compliance with POSIX.2, changingMAKEOVERRIDES
does not affectMAKEFLAGS
if the special target .POSIX appears in the makefile. You probably do not care about this.)A similar variable
MFLAGS
exists also, for historical compatibility. It has the same value asMAKEFLAGS
except that it does not contain the command line variable definitions, and it always begins with a hyphen unless it is empty (MAKEFLAGS
begins with a hyphen only when it begins with an option that has no single-letter version, such as --warn-undefined-variables).MFLAGS
was traditionally used explicitly in the recursivemake
command, like this:
subsystem: cd subdir && $(MAKE) $(MFLAGS)but now
MAKEFLAGS
makes this usage redundant. If you want your makefiles to be compatible with oldmake
programs, use this technique; it will work fine with more modernmake
versions too.The
MAKEFLAGS
variable can also be useful if you want to have certain options, such as -k (see section Summary of Options), set each time you runmake
. You simply put a value forMAKEFLAGS
in your environment. also setMAKEFLAGS
in a makefile, to specify additional flags that should also be in effect for that makefile. (Note that not useMFLAGS
this way. That variable is set only for compatibility;make
does not interpret a value you set for it in any way.)When
make
interprets the value ofMAKEFLAGS
(either from the environment or from a makefile), it first prepends a hyphen if the value does not already begin with one. Then it chops the value into words separated by blanks, and parses these words as if they were options given on the command line (except that -C, -f, -h, -o, -W, and their long-named versions are ignored; and there is no error for an invalid option).If you do put
MAKEFLAGS
in your environment, you should be sure not to include any options that will drastically affect the actions ofmake
and undermine the purpose of makefiles and ofmake
itself. For instance, the -t, -n, and -q options, if put in one of these variables, could have disastrous consequences and would certainly have at least surprising and probably annoying effects.
< > << Up >> Top Contents index ? 5.6.4 The --print-directory Option
If you use several levels of recursive
make
invocations, the -w or --print-directory option can make the output a lot easier to understand by showing each directory asmake
starts processing it and asmake
finishes processing it. For example, if make -w is run in the directory /u/gnu/make,make
will print a line of the form:
make: Entering directory `/u/gnu/make'.before doing anything else, and a line of the form:
make: Leaving directory `/u/gnu/make'.when processing is completed.
Normally, you do not need to specify this option because make does it for you: -w is turned on automatically when you use the -C option, and in sub-
make
s.make
will not automatically turn on -w if you also use -s, which says to be silent, or if you use --no-print-directory to explicitly disable it.
< > << Up >> Top Contents index ? 5.7 Defining Canned Command Sequences
When the same sequence of commands is useful in making various targets, you can define it as a canned sequence with the
define
directive, and refer to the canned sequence from the rules for those targets. The canned sequence is actually a variable, so the name must not conflict with other variable names.Here is an example of defining a canned sequence of commands:
define run-yacc yacc $(firstword $^) mv y.tab.c $@ endefHere
run-yacc
is the name of the variable being defined;endef
marks the end of the definition; the lines in between are the commands. Thedefine
directive does not expand variable references and function calls in the canned sequence; the $ characters, parentheses, variable names, and so on, all become part of the value of the variable you are defining. See section Defining Variables Verbatim, for a complete explanation ofdefine
.The first command in this example runs Yacc on the first prerequisite of whichever rule uses the canned sequence. The output file from Yacc is always named y.tab.c. The second command moves the output to the rule's target file name.
To use the canned sequence, substitute the variable into the commands of a rule. substitute it like any other variable (see section Basics of Variable References). Because variables defined by
define
are recursively expanded variables, all the variable references you wrote inside thedefine
are expanded now. For example:
foo.c : foo.y $(run-yacc)foo.y will be substituted for the variable $^ when it occurs in
run-yacc
s value, and foo.c for $@.This is a realistic example, but this particular one is not needed in practice because
make
has an implicit rule to figure out these commands based on the file names involved (see section Using Implicit Rules).In command execution, each line of a canned sequence is treated just as if the line appeared on its own in the rule, preceded by a tab. In particular,
make
invokes a separate subshell for each line. You can use the special prefix characters that affect command lines (@, -, and +) on each line of a canned sequence. See section Writing the Commands in Rules. For example, using this canned sequence:
define frobnicate @echo "frobnicating target $@" frob-step-1 $< -o $@-step-1 frob-step-2 $@-step-1 -o $@ endef
make
will not echo the first line, theecho
command. But it will echo the following two command lines.On the other hand, prefix characters on the command line that refers to a canned sequence apply to every line in the sequence. So the rule:
frob.out: frob.in @$(frobnicate)does not echo any commands. (See section Command Echoing, for a full explanation of @.)
< > << Up >> Top Contents index ? 5.8 Using Empty Commands
It is sometimes useful to define commands which do nothing. This is done simply by giving a command that consists of nothing but whitespace. For example:
target: ;defines an empty command string for target. You could also use a line beginning with a tab character to define an empty command string, but this would be confusing because such a line looks empty.
You may be wondering why you would want to define a command string that does nothing. The only reason this is useful is to prevent a target from getting implicit commands (from implicit rules or the
.DEFAULT
special target; see section 10. Using Implicit Rules and see section Defining Last-Resort Default Rules).You may be inclined to define empty command strings for targets that are not actual files, but only exist so that their prerequisites can be remade. However, this is not the best way to do that, because the prerequisites may not be remade properly if the target file actually does exist. See section Phony Targets, for a better way to do this.
< > << Up >> Top Contents index ? 6. How to Use Variables
A variable is a name defined in a makefile to represent a string of text, called the variable's value. These values are substituted by explicit request into targets, prerequisites, commands, and other parts of the makefile. (In some other versions of
make
, variables are called macros.)Variables and functions in all parts of a makefile are expanded when read, except for the shell commands in rules, the right-hand sides of variable definitions using =, and the bodies of variable definitions using the
define
directive.Variables can represent lists of file names, options to pass to compilers, programs to run, directories to look in for source files, directories to write output in, or anything else imagine.
A variable name may be any sequence of characters not containing :, #, =, or leading or trailing whitespace. However, variable names containing characters other than letters, numbers, and underscores should be avoided, as they may be given special meanings in the future, and with some shells they cannot be passed through the environment to a sub-
make
(see section Communicating Variables to a Sub-make
).Variable names are case-sensitive. The names foo, FOO, and Foo all refer to different variables.
It is traditional to use upper case letters in variable names, but we recommend using lower case letters for variable names that serve internal purposes in the makefile, and reserving upper case for parameters that control implicit rules or for parameters that the user should override with command options (see section Overriding Variables).
A few variables have names that are a single punctuation character or just a few characters. These are the automatic variables, and they have particular specialized uses. See section Automatic Variables.
6.1 Basics of Variable References use the value of a variable. 6.2 The Two Flavors of Variables Variables come in two flavors. 6.3 Advanced Features for Reference to Variables Advanced features for referencing a variable. 6.4 How Variables Get Their Values All the ways variables get their values. 6.5 Setting Variables set a variable in the makefile. 6.6 Appending More Text to Variables append more text to the old value of a variable. 6.7 The override
Directiveset a variable in the makefile even if the user has set it with a command argument. 6.8 Defining Variables Verbatim An alternate way to set a variable to a verbatim string. 6.9 Variables from the Environment Variable values can come from the environment. 6.10 Target-specific Variable Values Variable values can be defined on a per-target basis. 6.11 Pattern-specific Variable Values Target-specific variable values can be applied to a group of targets that match a pattern.
< > << Up >> Top Contents index ? 6.1 Basics of Variable References
To substitute a variable's value, write a dollar sign followed by the name of the variable in parentheses or braces: either $(foo) or ${foo} is a valid reference to the variable
foo
. This special significance of $ is why you must write $$ to have the effect of a single dollar sign in a file name or command.Variable references can be used in any context: targets, prerequisites, commands, most directives, and new variable values. Here is an example of a common case, where a variable holds the names of all the object files in a program:
objects = program.o foo.o utils.o program : $(objects) cc -o program $(objects) $(objects) : defs.hVariable references work by strict textual substitution. Thus, the rule
foo = c prog.o : prog.$(foo) $(foo)$(foo) -$(foo) prog.$(foo)could be used to compile a C program prog.c. Since spaces before the variable value are ignored in variable assignments, the value of
foo
is precisely c. (Don't actually write your makefiles this way!)A dollar sign followed by a character other than a dollar sign, open-parenthesis or open-brace treats that single character as the variable name. Thus, you could reference the variable
x
with $x. However, this practice is strongly discouraged, except in the case of the automatic variables (see section Automatic Variables).
< > << Up >> Top Contents index ? 6.2 The Two Flavors of Variables
There are two ways that a variable in GNU
make
can have a value; we call them the two flavors of variables. The two flavors are distinguished in how they are defined and in what they do when expanded.The first flavor of variable is a recursively expanded variable. Variables of this sort are defined by lines using = (see section Setting Variables) or by the
define
directive (see section Defining Variables Verbatim). The value you specify is installed verbatim; if it contains references to other variables, these references are expanded whenever this variable is substituted (in the course of expanding some other string). When this happens, it is called recursive expansion.For example,
foo = $(bar) bar = $(ugh) ugh = Huh? all:;echo $(foo)will echo Huh?: $(foo) expands to $(bar) which expands to $(ugh) which finally expands to Huh?.
This flavor of variable is the only sort supported by other versions of
make
. It has its advantages and its disadvantages. An advantage (most would say) is that:
CFLAGS = $(include_dirs) -O include_dirs = -Ifoo -Ibarwill do what was intended: when CFLAGS is expanded in a command, it will expand to -Ifoo -Ibar -O. A major disadvantage is that you cannot append something on the end of a variable, as in
CFLAGS = $(CFLAGS) -Obecause it will cause an infinite loop in the variable expansion. (Actually
make
detects the infinite loop and reports an error.)Another disadvantage is that any functions (see section Functions for Transforming Text) referenced in the definition will be executed every time the variable is expanded. This makes
make
run slower; worse, it causes thewildcard
andshell
functions to give unpredictable results because not easily control when they are called, or even how many times.To avoid all the problems and inconveniences of recursively expanded variables, there is another flavor: simply expanded variables.
Simply expanded variables are defined by lines using := (see section Setting Variables). The value of a simply expanded variable is scanned once and for all, expanding any references to other variables and functions, when the variable is defined. The actual value of the simply expanded variable is the result of expanding the text that you write. It does not contain any references to other variables; it contains their values as of the time this variable was defined. Therefore,
x := foo y := $(x) bar x := lateris equivalent to
y := foo bar x := laterWhen a simply expanded variable is referenced, its value is substituted verbatim.
Here is a somewhat more complicated example, illustrating the use of := in conjunction with the
shell
function. (See section Theshell
Function.) This example also shows use of the variableMAKELEVEL
, which is changed when it is passed down from level to level. (See section Communicating Variables to a Sub-make
, for information aboutMAKELEVEL
.)
ifeq (0,${MAKELEVEL}) cur-dir := $(shell pwd) whoami := $(shell whoami) host-type := $(shell arch) MAKE := ${MAKE} host-type=${host-type} whoami=${whoami} endifAn advantage of this use of := is that a typical `descend into a directory' command then looks like this:
${subdirs}: ${MAKE} cur-dir=${cur-dir}/$@ -C $@ allSimply expanded variables generally make complicated makefile programming more predictable because they work like variables in most programming languages. They allow you to redefine a variable using its own value (or its value processed in some way by one of the expansion functions) and to use the expansion functions much more efficiently (see section Functions for Transforming Text).
also use them to introduce controlled leading whitespace into variable values. Leading whitespace characters are discarded from your input before substitution of variable references and function calls; this means include leading spaces in a variable value by protecting them with variable references, like this:
nullstring := space := $(nullstring) # end of the lineHere the value of the variable
space
is precisely one space. The comment # end of the line is included here just for clarity. Since trailing space characters are not stripped from variable values, just a space at the end of the line would have the same effect (but be rather hard to read). If you put whitespace at the end of a variable value, it is a good idea to put a comment like that at the end of the line to make your intent clear. Conversely, if you do not want any whitespace characters at the end of your variable value, you must remember not to put a random comment on the end of the line after some whitespace, such as this:
dir := /foo/bar # directory to put the frobs inHere the value of the variable
dir
is /foo/bar (with four trailing spaces), which was probably not the intention. (Imagine something like $(dir)/file with this definition!)There is another assignment operator for variables, ?=. This is called a conditional variable assignment operator, because it only has an effect if the variable is not yet defined. This statement:
FOO ?= baris exactly equivalent to this (see section The
origin
Function):
ifeq ($(origin FOO), undefined) FOO = bar endifNote that a variable set to an empty value is still defined, so ?= will not set that variable.
< > << Up >> Top Contents index ? 6.3 Advanced Features for Reference to Variables
This section describes some advanced features use to reference variables in more flexible ways.
6.3.1 Substitution References Referencing a variable with substitutions on the value. 6.3.2 Computed Variable Names Computing the name of the variable to refer to.
< > << Up >> Top Contents index ? 6.3.1 Substitution References
A substitution reference substitutes the value of a variable with alterations that you specify. It has the form $(var:a=b) (or ${var:a=b}) and its meaning is to take the value of the variable var, replace every a at the end of a word with b in that value, and substitute the resulting string.
When we say "at the end of a word", we mean that a must appear either followed by whitespace or at the end of the value in order to be replaced; other occurrences of a in the value are unaltered. For example:
foo := a.o b.o c.o bar := $(foo:.o=.c)sets bar to a.c b.c c.c. See section Setting Variables.
A substitution reference is actually an abbreviation for use of the
patsubst
expansion function (see section Functions for String Substitution and Analysis). We provide substitution references as well aspatsubst
for compatibility with other implementations ofmake
.Another type of substitution reference lets you use the full power of the
patsubst
function. It has the same form $(var:a=b) described above, except that now a must contain a single % character. This case is equivalent to $(patsubst a,b,$(var)). See section Functions for String Substitution and Analysis, for a description of thepatsubst
function.
For example: foo := a.o b.o c.o bar := $(foo:%.o=%.c)sets bar to a.c b.c c.c.
< > << Up >> Top Contents index ? 6.3.2 Computed Variable Names
Computed variable names are a complicated concept needed only for sophisticated makefile programming. For most purposes you need not consider them, except to know that making a variable with a dollar sign in its name might have strange results. However, if you are the type that wants to understand everything, or you are actually interested in what they do, read on.
Variables may be referenced inside the name of a variable. This is called a computed variable name or a nested variable reference. For example,
x = y y = z a := $($(x))defines
a
as z: the $(x) inside $($(x)) expands to y, so $($(x)) expands to $(y) which in turn expands to z. Here the name of the variable to reference is not stated explicitly; it is computed by expansion of $(x). The reference $(x) here is nested within the outer variable reference.The previous example shows two levels of nesting, but any number of levels is possible. For example, here are three levels:
x = y y = z z = u a := $($($(x)))Here the innermost $(x) expands to y, so $($(x)) expands to $(y) which in turn expands to z; now we have $(z), which becomes u.
References to recursively-expanded variables within a variable name are reexpanded in the usual fashion. For example:
x = $(y) y = z z = Hello a := $($(x))defines
a
as Hello: $($(x)) becomes $($(y)) which becomes $(z) which becomes Hello.Nested variable references can also contain modified references and function invocations (see section Functions for Transforming Text), just like any other reference. For example, using the
subst
function (see section Functions for String Substitution and Analysis):
x = variable1 variable2 := Hello y = $(subst 1,2,$(x)) z = y a := $($($(z)))eventually defines
a
as Hello. It is doubtful that anyone would ever want to write a nested reference as convoluted as this one, but it works: $($($(z))) expands to $($(y)) which becomes $($(subst 1,2,$(x))). This gets the value variable1 fromx
and changes it by substitution to variable2, so that the entire string becomes $(variable2), a simple variable reference whose value is Hello.A computed variable name need not consist entirely of a single variable reference. It can contain several variable references, as well as some invariant text. For example,
a_dirs := dira dirb 1_dirs := dir1 dir2 a_files := filea fileb 1_files := file1 file2 ifeq "$(use_a)" "yes" a1 := a else a1 := 1 endif ifeq "$(use_dirs)" "yes" df := dirs else df := files endif dirs := $($(a1)_$(df))will give
dirs
the same value asa_dirs
,1_dirs
,a_files
or1_files
depending on the settings ofuse_a
anduse_dirs
.Computed variable names can also be used in substitution references:
a_objects := a.o b.o c.o 1_objects := 1.o 2.o 3.o sources := $($(a1)_objects:.o=.c)defines
sources
as either a.c b.c c.c or 1.c 2.c 3.c, depending on the value ofa1
.The only restriction on this sort of use of nested variable references is that they cannot specify part of the name of a function to be called. This is because the test for a recognized function name is done before the expansion of nested references. For example,
ifdef do_sort func := sort else func := strip endif bar := a d b g q c foo := $($(func) $(bar))attempts to give foo the value of the variable sort a d b g q c or strip a d b g q c, rather than giving a d b g q c as the argument to either the
sort
or thestrip
function. This restriction could be removed in the future if that change is shown to be a good idea.also use computed variable names in the left-hand side of a variable assignment, or in a
define
directive, as in:
dir = foo $(dir)_sources := $(wildcard $(dir)/*.c) define $(dir)_print lpr $($(dir)_sources) endefThis example defines the variables dir, foo_sources, and foo_print.
Note that nested variable references are quite different from recursively expanded variables (see section The Two Flavors of Variables), though both are used together in complex ways when doing makefile programming.
< > << Up >> Top Contents index ? 6.4 How Variables Get Their Values
Variables can get values in several different ways:
- specify an overriding value when you run
make
. See section Overriding Variables.
- specify a value in the makefile, either with an assignment (see section Setting Variables) or with a verbatim definition (see section Defining Variables Verbatim).
- Variables in the environment become
make
variables. See section Variables from the Environment.
- Several automatic variables are given new values for each rule. Each of these has a single conventional use. See section Automatic Variables.
- Several variables have constant initial values. See section Variables Used by Implicit Rules.
< > << Up >> Top Contents index ? 6.5 Setting Variables
To set a variable from the makefile, write a line starting with the variable name followed by = or :=. Whatever follows the = or := on the line becomes the value. For example,
objects = main.o foo.o bar.o utils.odefines a variable named
objects
. Whitespace around the variable name and immediately after the = is ignored.Variables defined with = are recursively expanded variables. Variables defined with := are simply expanded variables; these definitions can contain variable references which will be expanded before the definition is made. See section The Two Flavors of Variables.
The variable name may contain function and variable references, which are expanded when the line is read to find the actual variable name to use.
There is no limit on the length of the value of a variable except the amount of swapping space on the computer. When a variable definition is long, it is a good idea to break it into several lines by inserting backslash-newline at convenient places in the definition. This will not affect the functioning of
make
, but it will make the makefile easier to read.Most variable names are considered to have the empty string as a value if you have never set them. Several variables have built-in initial values that are not empty, but set them in the usual ways (see section Variables Used by Implicit Rules). Several special variables are set automatically to a new value for each rule; these are called the automatic variables (see section Automatic Variables).
If you'd like a variable to be set to a value only if it's not already set, then use the shorthand operator ?= instead of =. These two settings of the variable FOO are identical (see section The
origin
Function):
FOO ?= barand
ifeq ($(origin FOO), undefined) FOO = bar endif
< > << Up >> Top Contents index ? 6.6 Appending More Text to Variables
Often it is useful to add more text to the value of a variable already defined. You do this with a line containing +=, like this:
objects += another.oThis takes the value of the variable
objects
, and adds the text another.o to it (preceded by a single space). Thus:
objects = main.o foo.o bar.o utils.o objects += another.osets
objects
to main.o foo.o bar.o utils.o another.o.Using += is similar to:
objects = main.o foo.o bar.o utils.o objects := $(objects) another.obut differs in ways that become important when you use more complex values.
When the variable in question has not been defined before, += acts just like normal =: it defines a recursively-expanded variable. However, when there is a previous definition, exactly what += does depends on what flavor of variable you defined originally. See section The Two Flavors of Variables, for an explanation of the two flavors of variables.
When you add to a variable's value with +=,
make
acts essentially as if you had included the extra text in the initial definition of the variable. If you defined it first with :=, making it a simply-expanded variable, += adds to that simply-expanded definition, and expands the new text before appending it to the old value just as := does (see section Setting Variables, for a full explanation of :=). In fact,
variable := value variable += moreis exactly equivalent to:
variable := value variable := $(variable) moreOn the other hand, when you use += with a variable that you defined first to be recursively-expanded using plain =,
make
does something a bit different. Recall that when you define a recursively-expanded variable,make
does not expand the value you set for variable and function references immediately. Instead it stores the text verbatim, and saves these variable and function references to be expanded later, when you refer to the new variable (see section The Two Flavors of Variables). When you use += on a recursively-expanded variable, it is this unexpanded text to whichmake
appends the new text you specify.
variable = value variable += moreis roughly equivalent to:
temp = value variable = $(temp) moreexcept that of course it never defines a variable called
temp
. The importance of this comes when the variable's old value contains variable references. Take this common example:
CFLAGS = $(includes) -O ... CFLAGS += -pg # enable profilingThe first line defines the
CFLAGS
variable with a reference to another variable,includes
. (CFLAGS
is used by the rules for C compilation; see section Catalogue of Implicit Rules.) Using = for the definition makesCFLAGS
a recursively-expanded variable, meaning $(includes) -O is not expanded whenmake
processes the definition ofCFLAGS
. Thus,includes
need not be defined yet for its value to take effect. It only has to be defined before any reference toCFLAGS
. If we tried to append to the value ofCFLAGS
without using +=, we might do it like this:
CFLAGS := $(CFLAGS) -pg # enable profilingThis is pretty close, but not quite what we want. Using := redefines
CFLAGS
as a simply-expanded variable; this meansmake
expands the text $(CFLAGS) -pg before setting the variable. Ifincludes
is not yet defined, we get -O -pg, and a later definition ofincludes
will have no effect. Conversely, by using += we setCFLAGS
to the unexpanded value $(includes) -O -pg. Thus we preserve the reference toincludes
, so if that variable gets defined at any later point, a reference like $(CFLAGS) still uses its value.
< > << Up >> Top Contents index ? 6.7 The
override
DirectiveIf a variable has been set with a command argument (see section Overriding Variables), then ordinary assignments in the makefile are ignored. If you want to set the variable in the makefile even though it was set with a command argument, use an
override
directive, which is a line that looks like this:
override variable = valueor
override variable := valueTo append more text to a variable defined on the command line, use:
override variable += more textSee section Appending More Text to Variables.
The
override
directive was not invented for escalation in the war between makefiles and command arguments. It was invented so alter and add to values that the user specifies with command arguments.For example, suppose you always want the -g switch when you run the C compiler, but you would like to allow the user to specify the other switches with a command argument just as usual. You could use this
override
directive:
override CFLAGS += -galso use
override
directives withdefine
directives. This is done as you might expect:
override define foo bar endefSee section Defining Variables Verbatim.
< > << Up >> Top Contents index ? 6.8 Defining Variables Verbatim
Another way to set the value of a variable is to use the
define
directive. This directive has an unusual syntax which allows newline characters to be included in the value, which is convenient for defining both canned sequences of commands (see section Defining Canned Command Sequences), and also sections of makefile syntax to use witheval
(see section 8.8 Theeval
Function).The
define
directive is followed on the same line by the name of the variable and nothing more. The value to give the variable appears on the following lines. The end of the value is marked by a line containing just the wordendef
. Aside from this difference in syntax,define
works just like =: it creates a recursively-expanded variable (see section The Two Flavors of Variables). The variable name may contain function and variable references, which are expanded when the directive is read to find the actual variable name to use.You may nest
define
directives:make
will keep track of nested directives and report an error if they are not all properly closed withendef
. Note that lines beginning with tab characters are considered part of a command script, so anydefine
orendef
strings appearing on such a line will not be consideredmake
operators.
define two-lines echo foo echo $(bar) endefThe value in an ordinary assignment cannot contain a newline; but the newlines that separate the lines of the value in a
define
become part of the variable's value (except for the final newline which precedes theendef
and is not considered part of the value).When used in a command script, the previous example is functionally equivalent to this:
two-lines = echo foo; echo $(bar)since two commands separated by semicolon behave much like two separate shell commands. However, note that using two separate lines means
make
will invoke the shell twice, running an independent subshell for each line. See section Command Execution.If you want variable definitions made with
define
to take precedence over command-line variable definitions, use theoverride
directive together withdefine
:
override define two-lines foo $(bar) endefSee section The
override
Directive.
< > << Up >> Top Contents index ? 6.9 Variables from the Environment
Variables in
make
can come from the environment in whichmake
is run. Every environment variable thatmake
sees when it starts up is transformed into amake
variable with the same name and value. But an explicit assignment in the makefile, or with a command argument, overrides the environment. (If the -e flag is specified, then values from the environment override assignments in the makefile. See section Summary of Options. But this is not recommended practice.)Thus, by setting the variable
CFLAGS
in your environment, cause all C compilations in most makefiles to use the compiler switches you prefer. This is safe for variables with standard or conventional meanings because you know that no makefile will use them for other things. (But this is not totally reliable; some makefiles setCFLAGS
explicitly and therefore are not affected by the value in the environment.)When
make
is invoked recursively, variables defined in the outer invocation can be passed to inner invocations through the environment (see section Recursive Use ofmake
). By default, only variables that came from the environment or the command line are passed to recursive invocations. use theexport
directive to pass other variables. See section Communicating Variables to a Sub-make
, for full details.Other use of variables from the environment is not recommended. It is not wise for makefiles to depend for their functioning on environment variables set up outside their control, since this would cause different users to get different results from the same makefile. This is against the whole purpose of most makefiles.
Such problems would be especially likely with the variable
SHELL
, which is normally present in the environment to specify the user's choice of interactive shell. It would be very undesirable for this choice to affectmake
. Somake
ignores the environment value ofSHELL
(except on MS-DOS and MS-Windows, whereSHELL
is usually not set. See section Special handling of SHELL on MS-DOS.)
< > << Up >> Top Contents index ? 6.10 Target-specific Variable Values
Variable values in
make
are usually global; that is, they are the same regardless of where they are evaluated (unless they're reset, of course). One exception to that is automatic variables (see section Automatic Variables).The other exception is target-specific variable values. This feature allows you to define different values for the same variable, based on the target that
make
is currently building. As with automatic variables, these values are only available within the context of a target's command script (and in other target-specific assignments).Set a target-specific variable value like this:
target ... : variable-assignmentor like this:
target ... : override variable-assignmentMultiple target values create a target-specific variable value for each member of the target list individually.
The variable-assignment can be any valid form of assignment; recursive (=), static (:=), appending (+=), or conditional (?=). All variables that appear within the variable-assignment are evaluated within the context of the target: thus, any previously-defined target-specific variable values will be in effect. Note that this variable is actually distinct from any "global" value: the two variables do not have to have the same flavor (recursive vs. static).
Target-specific variables have the same priority as any other makefile variable. Variables provided on the command-line (and in the environment if the -e option is in force) will take precedence. Specifying the
override
directive will allow the target-specific variable value to be preferred.There is one more special feature of target-specific variables: when you define a target-specific variable, that variable value is also in effect for all prerequisites of this target (unless those prerequisites override it with their own target-specific variable value). So, for example, a statement like this:
prog : CFLAGS = -g prog : prog.o foo.o bar.owill set
CFLAGS
to -g in the command script for prog, but it will also setCFLAGS
to -g in the command scripts that create prog.o, foo.o, and bar.o, and any command scripts which create their prerequisites.
< > << Up >> Top Contents index ? 6.11 Pattern-specific Variable Values
In addition to target-specific variable values (see section Target-specific Variable Values), GNU
make
supports pattern-specific variable values. In this form, a variable is defined for any target that matches the pattern specified. Variables defined in this way are searched after any target-specific variables defined explicitly for that target, and before target-specific variables defined for the parent target.Set a pattern-specific variable value like this:
pattern ... : variable-assignmentor like this:
pattern ... : override variable-assignmentwhere pattern is a %-pattern. As with target-specific variable values, multiple pattern values create a pattern-specific variable value for each pattern individually. The variable-assignment can be any valid form of assignment. Any command-line variable setting will take precedence, unless
override
is specified.For example:
%.o : CFLAGS = -Owill assign
CFLAGS
the value of -O for all targets matching the pattern%.o
.
< > << Up >> Top Contents index ? 7. Conditional Parts of Makefiles
A conditional causes part of a makefile to be obeyed or ignored depending on the values of variables. Conditionals can compare the value of one variable to another, or the value of a variable to a constant string. Conditionals control what
make
actually "sees" in the makefile, so they cannot be used to control shell commands at the time of execution.
7.1 Example of a Conditional Example of a conditional 7.2 Syntax of Conditionals The syntax of conditionals. 7.3 Conditionals that Test Flags Conditionals that test flags.
< > << Up >> Top Contents index ? 7.1 Example of a Conditional
The following example of a conditional tells
make
to use one set of libraries if theCC
variable is gcc, and a different set of libraries otherwise. It works by controlling which of two command lines will be used as the command for a rule. The result is that CC=gcc as an argument tomake
changes not only which compiler is used but also which libraries are linked.
libs_for_gcc = -lgnu normal_libs = foo: $(objects) ifeq ($(CC),gcc) $(CC) -o foo $(objects) $(libs_for_gcc) else $(CC) -o foo $(objects) $(normal_libs) endifThis conditional uses three directives: one
ifeq
, oneelse
and oneendif
.The
ifeq
directive begins the conditional, and specifies the condition. It contains two arguments, separated by a comma and surrounded by parentheses. Variable substitution is performed on both arguments and then they are compared. The lines of the makefile following theifeq
are obeyed if the two arguments match; otherwise they are ignored.The
else
directive causes the following lines to be obeyed if the previous conditional failed. In the example above, this means that the second alternative linking command is used whenever the first alternative is not used. It is optional to have anelse
in a conditional.The
endif
directive ends the conditional. Every conditional must end with anendif
. Unconditional makefile text follows.As this example illustrates, conditionals work at the textual level: the lines of the conditional are treated as part of the makefile, or ignored, according to the condition. This is why the larger syntactic units of the makefile, such as rules, may cross the beginning or the end of the conditional.
When the variable
CC
has the value gcc, the above example has this effect:
foo: $(objects) $(CC) -o foo $(objects) $(libs_for_gcc)When the variable
CC
has any other value, the effect is this:
foo: $(objects) $(CC) -o foo $(objects) $(normal_libs)Equivalent results can be obtained in another way by conditionalizing a variable assignment and then using the variable unconditionally:
libs_for_gcc = -lgnu normal_libs = ifeq ($(CC),gcc) libs=$(libs_for_gcc) else libs=$(normal_libs) endif foo: $(objects) $(CC) -o foo $(objects) $(libs)
< > << Up >> Top Contents index ? 7.2 Syntax of Conditionals
The syntax of a simple conditional with no
else
is as follows:
conditional-directive text-if-true endifThe text-if-true may be any lines of text, to be considered as part of the makefile if the condition is true. If the condition is false, no text is used instead.
The syntax of a complex conditional is as follows:
conditional-directive text-if-true else text-if-false endifIf the condition is true, text-if-true is used; otherwise, text-if-false is used instead. The text-if-false can be any number of lines of text.
The syntax of the conditional-directive is the same whether the conditional is simple or complex. There are four different directives that test different conditions. Here is a table of them:
ifeq (arg1, arg2)
ifeq 'arg1 'arg2
ifeq "arg1" "arg2"
ifeq "arg1" 'arg2
ifeq 'arg1 "arg2"
- Expand all variable references in arg1 and arg2 and compare them. If they are identical, the text-if-true is effective; otherwise, the text-if-false, if any, is effective.
Often you want to test if a variable has a non-empty value. When the value results from complex expansions of variables and functions, expansions you would consider empty may actually contain whitespace characters and thus are not seen as empty. However, use the
strip
function (see section 8.2 Functions for String Substitution and Analysis) to avoid interpreting whitespace as a non-empty value. For example:
ifeq ($(strip $(foo)),) text-if-empty endifwill evaluate text-if-empty even if the expansion of
$(foo)
contains whitespace characters.
ifneq (arg1, arg2)
ifneq 'arg1 'arg2
ifneq "arg1" "arg2"
ifneq "arg1" 'arg2
ifneq 'arg1 "arg2"
- Expand all variable references in arg1 and arg2 and compare them. If they are different, the text-if-true is effective; otherwise, the text-if-false, if any, is effective.
ifdef variable-name
- If the variable variable-name has a non-empty value, the text-if-true is effective; otherwise, the text-if-false, if any, is effective. Variables that have never been defined have an empty value. The variable variable-name is itself expanded, so it could be a variable or function that expands to the name of a variable.
Note that
ifdef
only tests whether a variable has a value. It does not expand the variable to see if that value is nonempty. Consequently, tests usingifdef
return true for all definitions except those likefoo =
. To test for an empty value, useifeq ($(foo),)
. For example,
bar = foo = $(bar) ifdef foo frobozz = yes else frobozz = no endifsets frobozz to yes, while:
foo = ifdef foo frobozz = yes else frobozz = no endifsets frobozz to no.
ifndef variable-name
- If the variable variable-name has an empty value, the text-if-true is effective; otherwise, the text-if-false, if any, is effective.
Extra spaces are allowed and ignored at the beginning of the conditional directive line, but a tab is not allowed. (If the line begins with a tab, it will be considered a command for a rule.) Aside from this, extra spaces or tabs may be inserted with no effect anywhere except within the directive name or within an argument. A comment starting with # may appear at the end of the line.
The other two directives that play a part in a conditional are
else
andendif
. Each of these directives is written as one word, with no arguments. Extra spaces are allowed and ignored at the beginning of the line, and spaces or tabs at the end. A comment starting with # may appear at the end of the line.Conditionals affect which lines of the makefile
make
uses. If the condition is true,make
reads the lines of the text-if-true as part of the makefile; if the condition is false,make
ignores those lines completely. It follows that syntactic units of the makefile, such as rules, may safely be split across the beginning or the end of the conditional.
make
evaluates conditionals when it reads a makefile. Consequently, not use automatic variables in the tests of conditionals because they are not defined until commands are run (see section Automatic Variables).To prevent intolerable confusion, it is not permitted to start a conditional in one makefile and end it in another. However, you may write an
include
directive within a conditional, provided you do not attempt to terminate the conditional inside the included file.
< > << Up >> Top Contents index ? 7.3 Conditionals that Test Flags
write a conditional that tests
make
command flags such as -t by using the variableMAKEFLAGS
together with thefindstring
function (see section Functions for String Substitution and Analysis). This is useful whentouch
is not enough to make a file appear up to date.The
findstring
function determines whether one string appears as a substring of another. If you want to test for the -t flag, use t as the first string and the value ofMAKEFLAGS
as the other.For example, here is how to arrange to use ranlib -t to finish marking an archive file up to date:
archive.a: ... ifneq (,$(findstring t,$(MAKEFLAGS))) +touch archive.a +ranlib -t archive.a else ranlib archive.a endifThe + prefix marks those command lines as "recursive" so that they will be executed despite use of the -t flag. See section Recursive Use of
make
.
< > << Up >> Top Contents index ? 8. Functions for Transforming Text
Functions allow you to do text processing in the makefile to compute the files to operate on or the commands to use. You use a function in a function call, where you give the name of the function and some text (the arguments) for the function to operate on. The result of the function's processing is substituted into the makefile at the point of the call, just as a variable might be substituted.
8.1 Function Call Syntax write a function call. 8.2 Functions for String Substitution and Analysis General-purpose text manipulation functions. 8.3 Functions for File Names Functions for manipulating file names. 8.4 The foreach
FunctionRepeat some text with controlled variation. 8.5 The if
FunctionConditionally expand a value. 8.6 The call
FunctionExpand a user-defined function. 8.7 The value
FunctionReturn the un-expanded value of a variable. 8.8 The eval
FunctionEvaluate the arguments as makefile syntax. 8.9 The origin
FunctionFind where a variable got its value. 8.10 The shell
FunctionSubstitute the output of a shell command. 8.11 Functions That Control Make Functions that control how make runs.
< > << Up >> Top Contents index ? 8.1 Function Call Syntax
A function call resembles a variable reference. It looks like this:
$(function arguments)or like this:
${function arguments}Here function is a function name; one of a short list of names that are part of
make
. also essentially create your own functions by using thecall
builtin function.The arguments are the arguments of the function. They are separated from the function name by one or more spaces or tabs, and if there is more than one argument, then they are separated by commas. Such whitespace and commas are not part of an argument's value. The delimiters which you use to surround the function call, whether parentheses or braces, can appear in an argument only in matching pairs; the other kind of delimiters may appear singly. If the arguments themselves contain other function calls or variable references, it is wisest to use the same kind of delimiters for all the references; write $(subst a,b,$(x)), not $(subst a,b,${x}). This is because it is clearer, and because only one type of delimiter is matched to find the end of the reference.
The text written for each argument is processed by substitution of variables and function calls to produce the argument value, which is the text on which the function acts. The substitution is done in the order in which the arguments appear.
Commas and unmatched parentheses or braces cannot appear in the text of an argument as written; leading spaces cannot appear in the text of the first argument as written. These characters can be put into the argument value by variable substitution. First define variables
comma
andspace
whose values are isolated comma and space characters, then substitute these variables where such characters are wanted, like this:
comma:= , empty:= space:= $(empty) $(empty) foo:= a b c bar:= $(subst $(space),$(comma),$(foo)) # bar is now `a,b,c'.Here the
subst
function replaces each space with a comma, through the value offoo
, and substitutes the result.
< > << Up >> Top Contents index ? 8.2 Functions for String Substitution and Analysis
Here are some functions that operate on strings:
$(subst from,to,text)
- Performs a textual replacement on the text text: each occurrence of from is replaced by to. The result is substituted for the function call. For example,
$(subst ee,EE,feet on the street)substitutes the string fEEt on the strEEt.
$(patsubst pattern,replacement,text)
- Finds whitespace-separated words in text that match pattern and replaces them with replacement. Here pattern may contain a % which acts as a wildcard, matching any number of any characters within a word. If replacement also contains a %, the % is replaced by the text that matched the % in pattern. Only the first % in the pattern and replacement is treated this way; any subsequent % is unchanged.
% characters in
patsubst
function invocations can be quoted with preceding backslashes (\). Backslashes that would otherwise quote % characters can be quoted with more backslashes. Backslashes that quote % characters or other backslashes are removed from the pattern before it is compared file names or has a stem substituted into it. Backslashes that are not in danger of quoting % characters go unmolested. For example, the pattern the\%weird\\%pattern\\ has the%weird\ preceding the operative % character, and pattern\\ following it. The final two backslashes are left alone because they cannot affect any % character.Whitespace between words is folded into single space characters; leading and trailing whitespace is discarded.
For example,
$(patsubst %.c,%.o,x.c.c bar.c)produces the value x.c.o bar.o.
Substitution references (see section Substitution References) are a simpler way to get the effect of the
patsubst
function:
$(var:pattern=replacement)is equivalent to
$(patsubst pattern,replacement,$(var))The second shorthand simplifies one of the most common uses of
patsubst
: replacing the suffix at the end of file names.
$(var:suffix=replacement)is equivalent to
$(patsubst %suffix,%replacement,$(var))For example, you might have a list of object files:
objects = foo.o bar.o baz.oTo get the list of corresponding source files, you could simply write:
$(objects:.o=.c)instead of using the general form:
$(patsubst %.o,%.c,$(objects))
$(strip string)
- Removes leading and trailing whitespace from string and replaces each internal sequence of one or more whitespace characters with a single space. Thus, $(strip a b c ) results in a b c.
The function
strip
can be very useful when used in conjunction with conditionals. When comparing something with the empty string usingifeq
orifneq
, you usually want a string of just whitespace to match the empty string (see section 7. Conditional Parts of Makefiles).Thus, the following may fail to have the desired results:
.PHONY: all ifneq "$(needs_made)" "" all: $(needs_made) else all:;@echo 'Nothing to make!' endifReplacing the variable reference $(needs_made) with the function call $(strip $(needs_made)) in the
ifneq
directive would make it more robust.
$(findstring find,in)
- Searches in for an occurrence of find. If it occurs, the value is find; otherwise, the value is empty. use this function in a conditional to test for the presence of a specific substring in a given string. Thus, the two examples,
$(findstring a,a b c) $(findstring a,b c)produce the values a and (the empty string), respectively. See section 7.3 Conditionals that Test Flags, for a practical application of
findstring
.$(filter pattern...,text)
- Returns all whitespace-separated words in text that do match any of the pattern words, removing any words that do not match. The patterns are written using %, just like the patterns used in the
patsubst
function above.The
filter
function can be used to separate out different types of strings (such as file names) in a variable. For example:
sources := foo.c bar.c baz.s ugh.h foo: $(sources) cc $(filter %.c %.s,$(sources)) -o foosays that foo depends of foo.c, bar.c, baz.s and ugh.h but only foo.c, bar.c and baz.s should be specified in the command to the compiler.
$(filter-out pattern...,text)
- Returns all whitespace-separated words in text that do not match any of the pattern words, removing the words that do match one or more. This is the exact opposite of the
filter
function.For example, given:
objects=main1.o foo.o main2.o bar.o mains=main1.o main2.othe following generates a list which contains all the object files not in mains:
$(filter-out $(mains),$(objects))$(sort list)
- Sorts the words of list in lexical order, removing duplicate words. The output is a list of words separated by single spaces. Thus,
$(sort foo bar lose)returns the value bar foo lose.
Incidentally, since
sort
removes duplicate words, use it for this purpose even if you don't care about the sort order.
$(word n,text)
- Returns the nth word of text. The legitimate values of n start from 1. If n is bigger than the number of words in text, the value is empty. For example,
$(word 2, foo bar baz)returns bar.
$(wordlist s,e,text)
- Returns the list of words in text starting with word s and ending with word e (inclusive). The legitimate values of s and e start from 1. If s is bigger than the number of words in text, the value is empty. If e is bigger than the number of words in text, words up to the end of text are returned. If s is greater than e, nothing is returned. For example,
$(wordlist 2, 3, foo bar baz)returns bar baz.
$(words text)
- Returns the number of words in text. Thus, the last word of text is
$(word $(words text),text)
.
$(firstword names...)
- The argument names is regarded as a series of names, separated by whitespace. The value is the first name in the series. The rest of the names are ignored.
For example,
$(firstword foo bar)produces the result foo. Although
$(firstword text)
is the same as$(word 1,text)
, thefirstword
function is retained for its simplicity.Here is a realistic example of the use of
subst
andpatsubst
. Suppose that a makefile uses theVPATH
variable to specify a list of directories thatmake
should search for prerequisite files (see sectionVPATH
Search Path for All Prerequisites). This example shows how to tell the C compiler to search for header files in the same list of directories.The value of
VPATH
is a list of directories separated by colons, such as src:../headers. First, thesubst
function is used to change the colons to spaces:
$(subst :, ,$(VPATH))This produces src ../headers. Then
patsubst
is used to turn each directory name into a -I flag. These can be added to the value of the variableCFLAGS
, which is passed automatically to the C compiler, like this:
override CFLAGS += $(patsubst %,-I%,$(subst :, ,$(VPATH)))The effect is to append the text -Isrc -I../headers to the previously given value of
CFLAGS
. Theoverride
directive is used so that the new value is assigned even if the previous value ofCFLAGS
was specified with a command argument (see section Theoverride
Directive).
< > << Up >> Top Contents index ? 8.3 Functions for File Names
Several of the built-in expansion functions relate specifically to taking apart file names or lists of file names.
Each of the following functions performs a specific transformation on a file name. The argument of the function is regarded as a series of file names, separated by whitespace. (Leading and trailing whitespace is ignored.) Each file name in the series is transformed in the same way and the results are concatenated with single spaces between them.
$(dir names...)
- Extracts the directory-part of each file name in names. The directory-part of the file name is everything up through (and including) the last slash in it. If the file name contains no slash, the directory part is the string ./. For example,
$(dir src/foo.c hacks)produces the result src/ ./.
$(notdir names...)
- Extracts all but the directory-part of each file name in names. If the file name contains no slash, it is left unchanged. Otherwise, everything through the last slash is removed from it.
A file name that ends with a slash becomes an empty string. This is unfortunate, because it means that the result does not always have the same number of whitespace-separated file names as the argument had; but we do not see any other valid alternative.
For example,
$(notdir src/foo.c hacks)produces the result foo.c hacks.
$(suffix names...)
- Extracts the suffix of each file name in names. If the file name contains a period, the suffix is everything starting with the last period. Otherwise, the suffix is the empty string. This frequently means that the result will be empty when names is not, and if names contains multiple file names, the result may contain fewer file names.
For example,
$(suffix src/foo.c src-1.0/bar.c hacks)produces the result .c .c.
$(basename names...)
- Extracts all but the suffix of each file name in names. If the file name contains a period, the basename is everything starting up to (and not including) the last period. Periods in the directory part are ignored. If there is no period, the basename is the entire file name. For example,
$(basename src/foo.c src-1.0/bar hacks)produces the result src/foo src-1.0/bar hacks.
$(addsuffix suffix,names...)
- The argument names is regarded as a series of names, separated by whitespace; suffix is used as a unit. The value of suffix is appended to the end of each individual name and the resulting larger names are concatenated with single spaces between them. For example,
$(addsuffix .c,foo bar)produces the result foo.c bar.c.
$(addprefix prefix,names...)
- The argument names is regarded as a series of names, separated by whitespace; prefix is used as a unit. The value of prefix is prepended to the front of each individual name and the resulting larger names are concatenated with single spaces between them. For example,
$(addprefix src/,foo bar)produces the result src/foo src/bar.
$(join list1,list2)
- Concatenates the two arguments word by word: the two first words (one from each argument) concatenated form the first word of the result, the two second words form the second word of the result, and so on. So the nth word of the result comes from the nth word of each argument. If one argument has more words that the other, the extra words are copied unchanged into the result.
For example, $(join a b,.c .o) produces a.c b.o.
Whitespace between the words in the lists is not preserved; it is replaced with a single space.
This function can merge the results of the
dir
andnotdir
functions, to produce the original list of files which was given to those two functions.
$(wildcard pattern)
- The argument pattern is a file name pattern, typically containing wildcard characters (as in shell file name patterns). The result of
wildcard
is a space-separated list of the names of existing files that match the pattern. See section Using Wildcard Characters in File Names.
< > << Up >> Top Contents index ? 8.4 The
foreach
FunctionThe
foreach
function is very different from other functions. It causes one piece of text to be used repeatedly, each time with a different substitution performed on it. It resembles thefor
command in the shellsh
and theforeach
command in the C-shellcsh
.The syntax of the
foreach
function is:
$(foreach var,list,text)The first two arguments, var and list, are expanded before anything else is done; note that the last argument, text, is not expanded at the same time. Then for each word of the expanded value of list, the variable named by the expanded value of var is set to that word, and text is expanded. Presumably text contains references to that variable, so its expansion will be different each time.
The result is that text is expanded as many times as there are whitespace-separated words in list. The multiple expansions of text are concatenated, with spaces between them, to make the result of
foreach
.This simple example sets the variable files to the list of all files in the directories in the list dirs:
dirs := a b c d files := $(foreach dir,$(dirs),$(wildcard $(dir)/*))Here text is $(wildcard $(dir)/*). The first repetition finds the value a for
dir
, so it produces the same result as $(wildcard a/*); the second repetition produces the result of $(wildcard b/*); and the third, that of $(wildcard c/*).This example has the same result (except for setting dirs) as the following example:
files := $(wildcard a/* b/* c/* d/*)When text is complicated, improve readability by giving it a name, with an additional variable:
find_files = $(wildcard $(dir)/*) dirs := a b c d files := $(foreach dir,$(dirs),$(find_files))Here we use the variable
find_files
this way. We use plain = to define a recursively-expanding variable, so that its value contains an actual function call to be reexpanded under the control offoreach
; a simply-expanded variable would not do, sincewildcard
would be called only once at the time of definingfind_files
.The
foreach
function has no permanent effect on the variable var; its value and flavor after theforeach
function call are the same as they were beforehand. The other values which are taken from list are in effect only temporarily, during the execution offoreach
. The variable var is a simply-expanded variable during the execution offoreach
. If var was undefined before theforeach
function call, it is undefined after the call. See section The Two Flavors of Variables.You must take care when using complex variable expressions that result in variable names because many strange things are valid variable names, but are probably not what you intended. For example,
files := $(foreach Esta escrito en espanol!,b c ch,$(find_files))might be useful if the value of
find_files
references the variable whose name is Esta escrito en espanol! (es un nombre bastante largo, no?), but it is more likely to be a mistake.
< > << Up >> Top Contents index ? 8.5 The
if
FunctionThe
if
function provides support for conditional expansion in a functional context (as opposed to the GNUmake
makefile conditionals such asifeq
(see section Syntax of Conditionals).An
if
function call can contain either two or three arguments:
$(if condition,then-part[,else-part])The first argument, condition, first has all preceding and trailing whitespace stripped, then is expanded. If it expands to any non-empty string, then the condition is considered to be true. If it expands to an empty string, the condition is considered to be false.
If the condition is true then the second argument, then-part, is evaluated and this is used as the result of the evaluation of the entire
if
function.If the condition is false then the third argument, else-part, is evaluated and this is the result of the
if
function. If there is no third argument, theif
function evaluates to nothing (the empty string).Note that only one of the then-part or the else-part will be evaluated, never both. Thus, either can contain side-effects (such as
shell
function calls, etc.)
< > << Up >> Top Contents index ? 8.6 The
call
FunctionThe
call
function is unique in that it can be used to create new parameterized functions. write a complex expression as the value of a variable, then usecall
to expand it with different values.The syntax of the
call
function is:
$(call variable,param,param,...)When
make
expands this function, it assigns each param to temporary variables$(1)
,$(2)
, etc. The variable$(0)
will contain variable. There is no maximum number of parameter arguments. There is no minimum, either, but it doesn't make sense to usecall
with no parameters.Then variable is expanded as a
make
variable in the context of these temporary assignments. Thus, any reference to$(1)
in the value of variable will resolve to the first param in the invocation ofcall
.Note that variable is the name of a variable, not a reference to that variable. Therefore you would not normally use a $ or parentheses when writing it. (, however, use a variable reference in the name if you want the name not to be a constant.)
If variable is the name of a builtin function, the builtin function is always invoked (even if a
make
variable by that name also exists).The
call
function expands the param arguments before assigning them to temporary variables. This means that variable values containing references to builtin functions that have special expansion rules, likeforeach
orif
, may not work as you expect.Some examples may make this clearer.
This macro simply reverses its arguments:
reverse = $(2) $(1) foo = $(call reverse,a,b)Here foo will contain b a.
This one is slightly more interesting: it defines a macro to search for the first instance of a program in
PATH
:
pathsearch = $(firstword $(wildcard $(addsuffix /$(1),$(subst :, ,$(PATH))))) LS := $(call pathsearch,ls)Now the variable LS contains
/bin/ls
or similar.The
call
function can be nested. Each recursive invocation gets its own local values for$(1)
, etc. that mask the values of higher-levelcall
. For example, here is an implementation of a map function:
map = $(foreach a,$(2),$(call $(1),$(a)))Now map a function that normally takes only one argument, such as
origin
, to multiple values in one step:
o = $(call map,origin,o map MAKE)and end up with o containing something like file file default.
A final caution: be careful when adding whitespace to the arguments to
call
. As with other functions, any whitespace contained in the second and subsequent arguments is kept; this can cause strange effects. It's generally safest to remove all extraneous whitespace when providing parameters tocall
.
< > << Up >> Top Contents index ? 8.7 The
value
FunctionThe
value
function provides a way for you to use the value of a variable without having it expanded. Please note that this does not undo expansions which have already occurred; for example if you create a simply expanded variable its value is expanded during the definition; in that case thevalue
function will return the same result as using the variable directly.The syntax of the
value
function is:
$(value variable)Note that variable is the name of a variable; not a reference to that variable. Therefore you would not normally use a $ or parentheses when writing it. (, however, use a variable reference in the name if you want the name not to be a constant.)
The result of this function is a string containing the value of variable, without any expansion occurring. For example, in this makefile:
FOO = $PATH all: @echo $(FOO) @echo $(value FOO)The first output line would be
ATH
, since the "$P" would be expanded as amake
variable, while the second output line would be the current value of your$PATH
environment variable, since thevalue
function avoided the expansion.The
value
function is most often used in conjunction with theeval
function (see section 8.8 Theeval
Function).
< > << Up >> Top Contents index ? 8.8 The
eval
FunctionThe
eval
function is very special: it allows you to define new makefile constructs that are not constant; which are the result of evaluating other variables and functions. The argument to theeval
function is expanded, then the results of that expansion are parsed as makefile syntax. The expanded results can define newmake
variables, targets, implicit or explicit rules, etc.The result of the
eval
function is always the empty string; thus, it can be placed virtually anywhere in a makefile without causing syntax errors.It's important to realize that the
eval
argument is expanded twice; first by theeval
function, then the results of that expansion are expanded again when they are parsed as makefile syntax. This means you may need to provide extra levels of escaping for "$" characters when usingeval
. Thevalue
function (see section 8.7 Thevalue
Function) can sometimes be useful in these situations, to circumvent unwanted expansions.Here is an example of how
eval
can be used; this example combines a number of concepts and other functions. Although it might seem overly complex to useeval
in this example, rather than just writing out the rules, consider two things: first, the template definition (inPROGRAM_template
) could need to be much more complex than it is here; and second, you might put the complex, "generic" part of this example into another makefile, then include it in all the individual makefiles. Now your individual makefiles are quite straightforward.
PROGRAMS = server client server_OBJS = server.o server_priv.o server_access.o server_LIBS = priv protocol client_OBJS = client.o client_api.o client_mem.o client_LIBS = protocol # Everything after this is generic .PHONY: all all: $(PROGRAMS) define PROGRAM_template $(1): $$($(1)_OBJ) $$($(1)_LIBS:%=-l%) ALL_OBJS += $$($(1)_OBJS) endef $(foreach prog,$(PROGRAMS),$(eval $(call PROGRAM_template,$(prog)))) $(PROGRAMS): $(LINK.o) $^ $(LDLIBS) -o $@ clean: rm -f $(ALL_OBJS) $(PROGRAMS)
< > << Up >> Top Contents index ? 8.9 The
origin
FunctionThe
origin
function is unlike most other functions in that it does not operate on the values of variables; it tells you something about a variable. Specifically, it tells you where it came from.The syntax of the
origin
function is:
$(origin variable)Note that variable is the name of a variable to inquire about; not a reference to that variable. Therefore you would not normally use a $ or parentheses when writing it. (, however, use a variable reference in the name if you want the name not to be a constant.)
The result of this function is a string telling you how the variable variable was defined:
- undefined
if variable was never defined.
- default
if variable has a default definition, as is usual with
CC
and so on. See section Variables Used by Implicit Rules. Note that if you have redefined a default variable, theorigin
function will return the origin of the later definition.
- environment
if variable was defined as an environment variable and the -e option is not turned on (see section Summary of Options).
- environment override
if variable was defined as an environment variable and the -e option is turned on (see section Summary of Options).
- file
if variable was defined in a makefile.
- command line
if variable was defined on the command line.
- override
if variable was defined with an
override
directive in a makefile (see section Theoverride
Directive).
- automatic
if variable is an automatic variable defined for the execution of the commands for each rule (see section Automatic Variables).
This information is primarily useful (other than for your curiosity) to determine if you want to believe the value of a variable. For example, suppose you have a makefile foo that includes another makefile bar. You want a variable
bletch
to be defined in bar if you run the command make -f bar, even if the environment contains a definition ofbletch
. However, if foo definedbletch
before including bar, you do not want to override that definition. This could be done by using anoverride
directive in foo, giving that definition precedence over the later definition in bar; unfortunately, theoverride
directive would also override any command line definitions. So, bar could include:
ifdef bletch ifeq "$(origin bletch)" "environment" bletch = barf, gag, etc. endif endifIf
bletch
has been defined from the environment, this will redefine it.If you want to override a previous definition of
bletch
if it came from the environment, even under -e, you could instead write:
ifneq "$(findstring environment,$(origin bletch))" "" bletch = barf, gag, etc. endifHere the redefinition takes place if $(origin bletch) returns either environment or environment override. See section Functions for String Substitution and Analysis.
< > << Up >> Top Contents index ? 8.10 The
shell
FunctionThe
shell
function is unlike any other function except thewildcard
function (see section The Functionwildcard
) in that it communicates with the world outside ofmake
.The
shell
function performs the same function that backquotes () perform in most shells: it does command expansion. This means that it takes an argument that is a shell command and returns the output of the command. The only processingmake
does on the result, before substituting it into the surrounding text, is to convert each newline or carriage-return / newline pair to a single space. It also removes the trailing (carriage-return and) newline, if it's the last thing in the result.The commands run by calls to the
shell
function are run when the function calls are expanded (see section Howmake
Reads a Makefile). Because this function involves spawning a new shell, you should carefully consider the performance implications of using theshell
function within recursively expanded variables vs. simply expanded variables (see section The Two Flavors of Variables).Here are some examples of the use of the
shell
function:
contents := $(shell cat foo)sets
contents
to the contents of the file foo, with a space (rather than a newline) separating each line.
files := $(shell echo *.c)sets
files
to the expansion of *.c. Unlessmake
is using a very strange shell, this has the same result as $(wildcard *.c).
< > << Up >> Top Contents index ? 8.11 Functions That Control Make
These functions control the way make runs. Generally, they are used to provide information to the user of the makefile or to cause make to stop if some sort of environmental error is detected.
$(error text...)
- Generates a fatal error where the message is text. Note that the error is generated whenever this function is evaluated. So, if you put it inside a command script or on the right side of a recursive variable assignment, it won't be evaluated until later. The text will be expanded before the error is generated.
For example,
ifdef ERROR1 $(error error is $(ERROR1)) endifwill generate a fatal error during the read of the makefile if the
make
variableERROR1
is defined. Or,
ERR = $(error found an error!) .PHONY: err err: ; $(ERR)will generate a fatal error while
make
is running, if theerr
target is invoked.
$(warning text...)
- This function works similarly to the
error
function, above, except thatmake
doesn't exit. Instead, text is expanded and the resulting message is displayed, but processing of the makefile continues.The result of the expansion of this function is the empty string.
< > << Up >> Top Contents index ? 9. How to Run
make
A makefile that says how to recompile a program can be used in more than one way. The simplest use is to recompile every file that is out of date. Usually, makefiles are written so that if you run
make
with no arguments, it does just that.But you might want to update only some of the files; you might want to use a different compiler or different compiler options; you might want just to find out which files are out of date without changing them.
By giving arguments when you run
make
, do any of these things and many others.The exit status of
make
is always one of three values:
0
- The exit status is zero if
make
is successful.2
- The exit status is two if
make
encounters any errors. It will print messages describing the particular errors.1
- The exit status is one if you use the -q flag and
make
determines that some target is not already up to date. See section Instead of Executing the Commands.
9.1 Arguments to Specify the Makefile specify which makefile to use. 9.2 Arguments to Specify the Goals use goal arguments to specify which parts of the makefile to use. 9.3 Instead of Executing the Commands use mode flags to specify what kind of thing to do with the commands in the makefile other than simply execute them. 9.4 Avoiding Recompilation of Some Files avoid recompiling certain files. 9.5 Overriding Variables override a variable to specify an alternate compiler and other things. 9.6 Testing the Compilation of a Program proceed past some errors, to test compilation. 9.7 Summary of Options
< > << Up >> Top Contents index ? 9.1 Arguments to Specify the Makefile
The way to specify the name of the makefile is with the -f or --file option (--makefile also works). For example, -f altmake says to use the file altmake as the makefile.
If you use the -f flag several times and follow each -f with an argument, all the specified files are used jointly as makefiles.
If you do not use the -f or --file flag, the default is to try GNUmakefile, makefile, and Makefile, in that order, and use the first of these three which exists or can be made (see section Writing Makefiles).
< > << Up >> Top Contents index ? 9.2 Arguments to Specify the Goals
The goals are the targets that
make
should strive ultimately to update. Other targets are updated as well if they appear as prerequisites of goals, or prerequisites of prerequisites of goals, etc.By default, the goal is the first target in the makefile (not counting targets that start with a period). Therefore, makefiles are usually written so that the first target is for compiling the entire program or programs they describe. If the first rule in the makefile has several targets, only the first target in the rule becomes the default goal, not the whole list.
specify a different goal or goals with arguments to
make
. Use the name of the goal as an argument. If you specify several goals,make
processes each of them in turn, in the order you name them.Any target in the makefile may be specified as a goal (unless it starts with - or contains an =, in which case it will be parsed as a switch or variable definition, respectively). Even targets not in the makefile may be specified, if
make
can find implicit rules that say how to make them.
Make
will set the special variableMAKECMDGOALS
to the list of goals you specified on the command line. If no goals were given on the command line, this variable is empty. Note that this variable should be used only in special circumstances.An example of appropriate use is to avoid including .d files during
clean
rules (see section 4.14 Generating Prerequisites Automatically), somake
won't create them only to immediately remove them again:
sources = foo.c bar.c ifneq ($(MAKECMDGOALS),clean) include $(sources:.c=.d) endifOne use of specifying a goal is if you want to compile only a part of the program, or only one of several programs. Specify as a goal each file that you wish to remake. For example, consider a directory containing several programs, with a makefile that starts like this:
.PHONY: all all: size nm ld ar asIf you are working on the program
size
, you might want to say make size so that only the files of that program are recompiled.Another use of specifying a goal is to make files that are not normally made. For example, there may be a file of debugging output, or a version of the program that is compiled specially for testing, which has a rule in the makefile but is not a prerequisite of the default goal.
Another use of specifying a goal is to run the commands associated with a phony target (see section 4.6 Phony Targets) or empty target (see section Empty Target Files to Record Events). Many makefiles contain a phony target named clean which deletes everything except source files. Naturally, this is done only if you request it explicitly with make clean. Following is a list of typical phony and empty target names. See section 14.5 Standard Targets for Users, for a detailed list of all the standard target names which GNU software packages use.
- all
- Make all the top-level targets the makefile knows about.
- clean
- Delete all files that are normally created by running
make
.
- mostlyclean
- Like clean, but may refrain from deleting a few files that people normally don't want to recompile. For example, the mostlyclean target for GCC does not delete libgcc.a, because recompiling it is rarely necessary and takes a lot of time.
- distclean
- realclean
- clobber
- Any of these targets might be defined to delete more files than clean does. For example, this would delete configuration files or links that you would normally create as preparation for compilation, even if the makefile itself cannot create these files.
- install
- Copy the executable file into a directory that users typically search for commands; copy any auxiliary files that the executable uses into the directories where it will look for them.
- Print listings of the source files that have changed.
- tar
- Create a tar file of the source files.
- shar
- Create a shell archive (shar file) of the source files.
- dist
- Create a distribution file of the source files. This might be a tar file, or a shar file, or a compressed version of one of the above, or even more than one of the above.
- TAGS
- Update a tags table for this program.
- check
- test
- Perform self tests on the program this makefile builds.
< > << Up >> Top Contents index ? 9.3 Instead of Executing the Commands
The makefile tells
make
how to tell whether a target is up to date, and how to update each target. But updating the targets is not always what you want. Certain options specify other activities formake
.
- -n
- --just-print
- --dry-run
- --recon
"No-op". The activity is to print what commands would be used to make the targets up to date, but not actually execute them.
- -t
- --touch
"Touch". The activity is to mark the targets as up to date without actually changing them. In other words,
make
pretends to compile the targets but does not really change their contents.
- -q
- --question
"Question". The activity is to find out silently whether the targets are up to date already; but execute no commands in either case. In other words, neither compilation nor output will occur.
- -W file
- --what-if=file
- --assume-new=file
- --new-file=file
"What if". Each -W flag is followed by a file name. The given files' modification times are recorded by
make
as being the present time, although the actual modification times remain the same. use the -W flag in conjunction with the -n flag to see what would happen if you were to modify specific files.With the -n flag,
make
prints the commands that it would normally execute but does not execute them.With the -t flag,
make
ignores the commands in the rules and uses (in effect) the commandtouch
for each target that needs to be remade. Thetouch
command is also printed, unless -s or.SILENT
is used. For speed,make
does not actually invoke the programtouch
. It does the work directly.With the -q flag,
make
prints nothing and executes no commands, but the exit status code it returns is zero if and only if the targets to be considered are already up to date. If the exit status is one, then some updating needs to be done. Ifmake
encounters an error, the exit status is two, so distinguish an error from a target that is not up to date.It is an error to use more than one of these three flags in the same invocation of
make
.The -n, -t, and -q options do not affect command lines that begin with + characters or contain the strings $(MAKE) or ${MAKE}. Note that only the line containing the + character or the strings $(MAKE) or ${MAKE} is run regardless of these options. Other lines in the same rule are not run unless they too begin with + or contain $(MAKE) or ${MAKE} (See section How the
MAKE
Variable Works.)The -W flag provides two features:
- If you also use the -n or -q flag, see what
make
would do if you were to modify some files.
- Without the -n or -q flag, when
make
is actually executing commands, the -W flag can directmake
to act as if some files had been modified, without actually modifying the files.Note that the options -p and -v allow you to obtain other information about
make
or about the makefiles in use (see section Summary of Options).
< > << Up >> Top Contents index ? 9.4 Avoiding Recompilation of Some Files
Sometimes you may have changed a source file but you do not want to recompile all the files that depend on it. For example, suppose you add a macro or a declaration to a header file that many other files depend on. Being conservative,
make
assumes that any change in the header file requires recompilation of all dependent files, but you know that they do not need to be recompiled and you would rather not waste the time waiting for them to compile.If you anticipate the problem before changing the header file, use the -t flag. This flag tells
make
not to run the commands in the rules, but rather to mark the target up to date by changing its last-modification date. You would follow this procedure:
- Use the command make to recompile the source files that really need recompilation, ensuring that the object files are up-to-date before you begin.
- Make the changes in the header files.
- Use the command make -t to mark all the object files as up to date. The next time you run
make
, the changes in the header files will not cause any recompilation.If you have already changed the header file at a time when some files do need recompilation, it is too late to do this. Instead, use the -o file flag, which marks a specified file as "old" (see section Summary of Options). This means that the file itself will not be remade, and nothing else will be remade on its account. Follow this procedure:
- Recompile the source files that need compilation for reasons independent of the particular header file, with make -o headerfile. If several header files are involved, use a separate -o option for each header file.
- Touch all the object files with make -t.
< > << Up >> Top Contents index ? 9.5 Overriding Variables
An argument that contains = specifies the value of a variable: v=x sets the value of the variable v to x. If you specify a value in this way, all ordinary assignments of the same variable in the makefile are ignored; we say they have been overridden by the command line argument.
The most common way to use this facility is to pass extra flags to compilers. For example, in a properly written makefile, the variable
CFLAGS
is included in each command that runs the C compiler, so a file foo.c would be compiled something like this:
cc -c $(CFLAGS) foo.cThus, whatever value you set for
CFLAGS
affects each compilation that occurs. The makefile probably specifies the usual value forCFLAGS
, like this:
CFLAGS=-gEach time you run
make
, override this value if you wish. For example, if you say make CFLAGS='-g -O', each C compilation will be done with cc -c -g -O. (This also illustrates how use quoting in the shell to enclose spaces and other special characters in the value of a variable when you override it.)The variable
CFLAGS
is only one of many standard variables that exist just so that change them this way. See section Variables Used by Implicit Rules, for a complete list.also program the makefile to look at additional variables of your own, giving the user the ability to control other aspects of how the makefile works by changing the variables.
When you override a variable with a command argument, define either a recursively-expanded variable or a simply-expanded variable. The examples shown above make a recursively-expanded variable; to make a simply-expanded variable, write := instead of =. But, unless you want to include a variable reference or function call in the value that you specify, it makes no difference which kind of variable you create.
There is one way that the makefile can change a variable that you have overridden. This is to use the
override
directive, which is a line that looks like this: override variable = value (see section Theoverride
Directive).
< > << Up >> Top Contents index ? 9.6 Testing the Compilation of a Program
Normally, when an error happens in executing a shell command,
make
gives up immediately, returning a nonzero status. No further commands are executed for any target. The error implies that the goal cannot be correctly remade, andmake
reports this as soon as it knows.When you are compiling a program that you have just changed, this is not what you want. Instead, you would rather that
make
try compiling every file that can be tried, to show you as many compilation errors as possible.On these occasions, you should use the -k or --keep-going flag. This tells
make
to continue to consider the other prerequisites of the pending targets, remaking them if necessary, before it gives up and returns nonzero status. For example, after an error in compiling one object file, make -k will continue compiling other object files even though it already knows that linking them will be impossible. In addition to continuing after failed shell commands, make -k will continue as much as possible after discovering that it does not know how to make a target or prerequisite file. This will always cause an error message, but without -k, it is a fatal error (see section Summary of Options).The usual behavior of
make
assumes that your purpose is to get the goals up to date; oncemake
learns that this is impossible, it might as well report the failure immediately. The -k flag says that the real purpose is to test as much as possible of the changes made in the program, perhaps to find several independent problems so that correct them all before the next attempt to compile. This is why Emacs' M-x compile command passes the -k flag by default.
< > << Up >> Top Contents index ? 9.7 Summary of Options
Here is a table of all the options
make
understands:
- -b
- -m
- These options are ignored for compatibility with other versions of
make
.
- -B
- --always-make
- Consider all targets out-of-date. GNU
make
proceeds to consider targets and their prerequisites using the normal algorithms; however, all these targets are remade, regardless of the status of their prerequisites.
- -C dir
- --directory=dir
- Change to directory dir before reading the makefiles. If multiple -C options are specified, each is interpreted relative to the previous one: -C / -C etc is equivalent to -C /etc. This is typically used with recursive invocations of
make
(see section Recursive Use ofmake
).
- -d
Print debugging information in addition to normal processing. The debugging information says which files are being considered for remaking, which file-times are being compared and with what results, which files actually need to be remade, which implicit rules are considered and which are applied--everything interesting about how
make
decides what to do. The-d
option is equivalent to --debug=a (see below).
- --debug[=options]
Print debugging information in addition to normal processing. Various levels and types of output can be chosen. With no arguments, print the "basic" level of debugging. Possible arguments are below; only the first character is considered, and values must be comma- or space-separated.
a (all)
- All types of debugging output are enabled. This is equivalent to using -d.
b (basic)
- Basic debugging prints each target that was found to be out-of-date, and whether the build was successful or not.
v (verbose)
- A level above basic; includes messages about which makefiles were parsed, prerequisites that did not need to be rebuilt, etc. This option also enables basic messages.
i (implicit)
- Prints messages describing the implicit rule searches for each target. This option also enables basic messages.
j (jobs)
- Prints messages giving details on the invocation of specific subcommands.
m (makefile)
- By default, the above messages are not enabled while trying to remake the makefiles. This option enables messages while rebuilding makefiles, too. Note that the all option does enable this option. This option also enables basic messages.
- -e
- --environment-overrides
- Give variables taken from the environment precedence over variables from makefiles. See section Variables from the Environment.
- -f file
- --file=file
- --makefile=file
- Read the file named file as a makefile. See section Writing Makefiles.
- -h
- --help
Remind you of the options that
make
understands and then exit.
- -i
- --ignore-errors
- Ignore all errors in commands executed to remake files. See section Errors in Commands.
- -I dir
- --include-dir=dir
- Specifies a directory dir to search for included makefiles. See section Including Other Makefiles. If several -I options are used to specify several directories, the directories are searched in the order specified.
- -j [jobs]
- --jobs[=jobs]
- Specifies the number of jobs (commands) to run simultaneously. With no argument,
make
runs as many jobs simultaneously as possible. If there is more than one -j option, the last one is effective. See section Parallel Execution, for more information on how commands are run. Note that this option is ignored on MS-DOS.
- -k
- --keep-going
- Continue as much as possible after an error. While the target that failed, and those that depend on it, cannot be remade, the other prerequisites of these targets can be processed all the same. See section Testing the Compilation of a Program.
- -l [load]
- --load-average[=load]
- --max-load[=load]
- Specifies that no new jobs (commands) should be started if there are other jobs running and the load average is at least load (a floating-point number). With no argument, removes a previous load limit. See section Parallel Execution.
- -n
- --just-print
- --dry-run
- --recon
Print the commands that would be executed, but do not execute them. See section Instead of Executing the Commands.
- -o file
- --old-file=file
- --assume-old=file
- Do not remake the file file even if it is older than its prerequisites, and do not remake anything on account of changes in file. Essentially the file is treated as very old and its rules are ignored. See section Avoiding Recompilation of Some Files.
- -p
- --print-data-base
- Print the data base (rules and variable values) that results from reading the makefiles; then execute as usual or as otherwise specified. This also prints the version information given by the -v switch (see below). To print the data base without trying to remake any files, use make -qp. To print the data base of predefined rules and variables, use make -p -f /dev/null. The data base output contains filename and linenumber information for command and variable definitions, so it can be a useful debugging tool in complex environments.
- -q
- --question
- "Question mode". Do not run any commands, or print anything; just return an exit status that is zero if the specified targets are already up to date, one if any remaking is required, or two if an error is encountered. See section Instead of Executing the Commands.
- -r
- --no-builtin-rules
- Eliminate use of the built-in implicit rules (see section Using Implicit Rules). still define your own by writing pattern rules (see section Defining and Redefining Pattern Rules). The -r option also clears out the default list of suffixes for suffix rules (see section Old-Fashioned Suffix Rules). But still define your own suffixes with a rule for
.SUFFIXES
, and then define your own suffix rules. Note that only rules are affected by the-r
option; default variables remain in effect (see section Variables Used by Implicit Rules); see the -R option below.
- -R
- --no-builtin-variables
- Eliminate use of the built-in rule-specific variables (see section Variables Used by Implicit Rules). still define your own, of course. The -R option also automatically enables the -r option (see above), since it doesn't make sense to have implicit rules without any definitions for the variables that they use.
- -s
- --silent
- --quiet
Silent operation; do not print the commands as they are executed. See section Command Echoing.
- -S
- --no-keep-going
- --stop
Cancel the effect of the -k option. This is never necessary except in a recursive
make
where -k might be inherited from the top-levelmake
viaMAKEFLAGS
(see section Recursive Use ofmake
) or if you set -k inMAKEFLAGS
in your environment.
- -t
- --touch
Touch files (mark them up to date without really changing them) instead of running their commands. This is used to pretend that the commands were done, in order to fool future invocations of
make
. See section Instead of Executing the Commands.
- -v
- --version
- Print the version of the
make
program plus a copyright, a list of authors, and a notice that there is no warranty; then exit.
- -w
- --print-directory
- Print a message containing the working directory both before and after executing the makefile. This may be useful for tracking down errors from complicated nests of recursive
make
commands. See section Recursive Use ofmake
. (In practice, you rarely need to specify this option since make does it for you; see The --print-directory Option.)
- --no-print-directory
- Disable printing of the working directory under
-w
. This option is useful when-w
is turned on automatically, but you do not want to see the extra messages. See section The --print-directory Option.
- -W file
- --what-if=file
- --new-file=file
- --assume-new=file
- Pretend that the target file has just been modified. When used with the -n flag, this shows you what would happen if you were to modify that file. Without -n, it is almost the same as running a
touch
command on the given file before runningmake
, except that the modification time is changed only in the imagination ofmake
. See section Instead of Executing the Commands.
- --warn-undefined-variables
- Issue a warning message whenever
make
sees a reference to an undefined variable. This can be helpful when you are trying to debug makefiles which use variables in complex ways.
< > << Up >> Top Contents index ? 10. Using Implicit Rules
Certain standard ways of remaking target files are used very often. For example, one customary way to make an object file is from a C source file using the C compiler,
cc
.Implicit rules tell
make
how to use customary techniques so that you do not have to specify them in detail when you want to use them. For example, there is an implicit rule for C compilation. File names determine which implicit rules are run. For example, C compilation typically takes a .c file and makes a .o file. Somake
applies the implicit rule for C compilation when it sees this combination of file name endings.A chain of implicit rules can apply in sequence; for example,
make
will remake a .o file from a .y file by way of a .c file.The built-in implicit rules use several variables in their commands so that, by changing the values of the variables, change the way the implicit rule works. For example, the variable
CFLAGS
controls the flags given to the C compiler by the implicit rule for C compilation.define your own implicit rules by writing pattern rules.
Suffix rules are a more limited way to define implicit rules. Pattern rules are more general and clearer, but suffix rules are retained for compatibility.
10.1 Using Implicit Rules use an existing implicit rule to get the commands for updating a file. 10.2 Catalogue of Implicit Rules A list of built-in implicit rules. 10.3 Variables Used by Implicit Rules change what predefined rules do. 10.4 Chains of Implicit Rules use a chain of implicit rules. 10.5 Defining and Redefining Pattern Rules define new implicit rules. 10.6 Defining Last-Resort Default Rules defining commands for rules which cannot find any. 10.7 Old-Fashioned Suffix Rules The old-fashioned style of implicit rule. 10.8 Implicit Rule Search Algorithm The precise algorithm for applying implicit rules.
< > << Up >> Top Contents index ? 10.1 Using Implicit Rules
To allow
make
to find a customary method for updating a target file, all you have to do is refrain from specifying commands yourself. Either write a rule with no command lines, or don't write a rule at all. Thenmake
will figure out which implicit rule to use based on which kind of source file exists or can be made.For example, suppose the makefile looks like this:
foo : foo.o bar.o cc -o foo foo.o bar.o $(CFLAGS) $(LDFLAGS)Because you mention foo.o but do not give a rule for it,
make
will automatically look for an implicit rule that tells how to update it. This happens whether or not the file foo.o currently exists.If an implicit rule is found, it can supply both commands and one or more prerequisites (the source files). You would want to write a rule for foo.o with no command lines if you need to specify additional prerequisites, such as header files, that the implicit rule cannot supply.
Each implicit rule has a target pattern and prerequisite patterns. There may be many implicit rules with the same target pattern. For example, numerous rules make .o files: one, from a .c file with the C compiler; another, from a .p file with the Pascal compiler; and so on. The rule that actually applies is the one whose prerequisites exist or can be made. So, if you have a file foo.c,
make
will run the C compiler; otherwise, if you have a file foo.p,make
will run the Pascal compiler; and so on.Of course, when you write the makefile, you know which implicit rule you want
make
to use, and you know it will choose that one because you know which possible prerequisite files are supposed to exist. See section Catalogue of Implicit Rules, for a catalogue of all the predefined implicit rules.Above, we said an implicit rule applies if the required prerequisites "exist or can be made". A file "can be made" if it is mentioned explicitly in the makefile as a target or a prerequisite, or if an implicit rule can be recursively found for how to make it. When an implicit prerequisite is the result of another implicit rule, we say that chaining is occurring. See section Chains of Implicit Rules.
In general,
make
searches for an implicit rule for each target, and for each double-colon rule, that has no commands. A file that is mentioned only as a prerequisite is considered a target whose rule specifies nothing, so implicit rule search happens for it. See section Implicit Rule Search Algorithm, for the details of how the search is done.Note that explicit prerequisites do not influence implicit rule search. For example, consider this explicit rule:
foo.o: foo.pThe prerequisite on foo.p does not necessarily mean that
make
will remake foo.o according to the implicit rule to make an object file, a .o file, from a Pascal source file, a .p file. For example, if foo.c also exists, the implicit rule to make an object file from a C source file is used instead, because it appears before the Pascal rule in the list of predefined implicit rules (see section Catalogue of Implicit Rules).If you do not want an implicit rule to be used for a target that has no commands, give that target empty commands by writing a semicolon (see section Defining Empty Commands).
< > << Up >> Top Contents index ? 10.2 Catalogue of Implicit Rules
Here is a catalogue of predefined implicit rules which are always available unless the makefile explicitly overrides or cancels them. See section Canceling Implicit Rules, for information on canceling or overriding an implicit rule. The -r or --no-builtin-rules option cancels all predefined rules.
Not all of these rules will always be defined, even when the -r option is not given. Many of the predefined implicit rules are implemented in
make
as suffix rules, so which ones will be defined depends on the suffix list (the list of prerequisites of the special target.SUFFIXES
). The default suffix list is:.out
,.a
,.ln
,.o
,.c
,.cc
,.C
,.p
,.f
,.F
,.r
,.y
,.l
,.s
,.S
,.mod
,.sym
,.def
,.h
,.info
,.dvi
,.tex
,.texinfo
,.texi
,.txinfo
,.w
,.ch
.web
,.sh
,.elc
,.el
. All of the implicit rules described below whose prerequisites have one of these suffixes are actually suffix rules. If you modify the suffix list, the only predefined suffix rules in effect will be those named by one or two of the suffixes that are on the list you specify; rules whose suffixes fail to be on the list are disabled. See section Old-Fashioned Suffix Rules, for full details on suffix rules.
- Compiling C programs
- n.o is made automatically from n.c with a command of the form $(CC) -c $(CPPFLAGS) $(CFLAGS).
- Compiling C++ programs
- n.o is made automatically from n.cc or n.C with a command of the form $(CXX) -c $(CPPFLAGS) $(CXXFLAGS). We encourage you to use the suffix .cc for C++ source files instead of .C.
- Compiling Pascal programs
- n.o is made automatically from n.p with the command $(PC) -c $(PFLAGS).
- Compiling Fortran and Ratfor programs
- n.o is made automatically from n.r, n.F or n.f by running the Fortran compiler. The precise command used is as follows:
- .f
- $(FC) -c $(FFLAGS).
- .F
- $(FC) -c $(FFLAGS) $(CPPFLAGS).
- .r
- $(FC) -c $(FFLAGS) $(RFLAGS).
- Preprocessing Fortran and Ratfor programs
- n.f is made automatically from n.r or n.F. This rule runs just the preprocessor to convert a Ratfor or preprocessable Fortran program into a strict Fortran program. The precise command used is as follows:
- .F
- $(FC) -F $(CPPFLAGS) $(FFLAGS).
- .r
- $(FC) -F $(FFLAGS) $(RFLAGS).
- Compiling Modula-2 programs
- n.sym is made from n.def with a command of the form $(M2C) $(M2FLAGS) $(DEFFLAGS). n.o is made from n.mod; the form is: $(M2C) $(M2FLAGS) $(MODFLAGS).
- Assembling and preprocessing assembler programs
- n.o is made automatically from n.s by running the assembler,
as
. The precise command is $(AS) $(ASFLAGS).n.s is made automatically from n.S by running the C preprocessor,
cpp
. The precise command is $(CPP) $(CPPFLAGS).
- Linking a single object file
- n is made automatically from n.o by running the linker (usually called
ld
) via the C compiler. The precise command used is $(CC) $(LDFLAGS) n.o $(LOADLIBES) $(LDLIBS).This rule does the right thing for a simple program with only one source file. It will also do the right thing if there are multiple object files (presumably coming from various other source files), one of which has a name matching that of the executable file. Thus,
x: y.o z.owhen x.c, y.c and z.c all exist will execute:
cc -c x.c -o x.o cc -c y.c -o y.o cc -c z.c -o z.o cc x.o y.o z.o -o x rm -f x.o rm -f y.o rm -f z.oIn more complicated cases, such as when there is no object file whose name derives from the executable file name, you must write an explicit command for linking.
Each kind of file automatically made into .o object files will be automatically linked by using the compiler ($(CC), $(FC) or $(PC); the C compiler $(CC) is used to assemble .s files) without the -c option. This could be done by using the .o object files as intermediates, but it is faster to do the compiling and linking in one step, so that's how it's done.
- Yacc for C programs
- n.c is made automatically from n.y by running Yacc with the command $(YACC) $(YFLAGS).
- Lex for C programs
- n.c is made automatically from n.l by running Lex. The actual command is $(LEX) $(LFLAGS).
- Lex for Ratfor programs
- n.r is made automatically from n.l by running Lex. The actual command is $(LEX) $(LFLAGS).
The convention of using the same suffix .l for all Lex files regardless of whether they produce C code or Ratfor code makes it impossible for
make
to determine automatically which of the two languages you are using in any particular case. Ifmake
is called upon to remake an object file from a .l file, it must guess which compiler to use. It will guess the C compiler, because that is more common. If you are using Ratfor, make suremake
knows this by mentioning n.r in the makefile. Or, if you are using Ratfor exclusively, with no C files, remove .c from the list of implicit rule suffixes with:
.SUFFIXES: .SUFFIXES: .o .r .f .l ...
- Making Lint Libraries from C, Yacc, or Lex programs
- n.ln is made from n.c by running
lint
. The precise command is $(LINT) $(LINTFLAGS) $(CPPFLAGS) -i. The same command is used on the C code produced from n.y or n.l.
- TeX and Web
- n.dvi is made from n.tex with the command $(TEX). n.tex is made from n.web with $(WEAVE), or from n.w (and from n.ch if it exists or can be made) with $(CWEAVE). n.p is made from n.web with $(TANGLE) and n.c is made from n.w (and from n.ch if it exists or can be made) with $(CTANGLE).
- Texinfo and Info
- n.dvi is made from n.texinfo, n.texi, or n.txinfo, with the command $(TEXI2DVI) $(TEXI2DVI_FLAGS). n.info is made from n.texinfo, n.texi, or n.txinfo, with the command $(MAKEINFO) $(MAKEINFO_FLAGS).
- RCS
- Any file n is extracted if necessary from an RCS file named either n,v or RCS/n,v. The precise command used is $(CO) $(COFLAGS). n will not be extracted from RCS if it already exists, even if the RCS file is newer. The rules for RCS are terminal (see section Match-Anything Pattern Rules), so RCS files cannot be generated from another source; they must actually exist.
- SCCS
- Any file n is extracted if necessary from an SCCS file named either s.n or SCCS/s.n. The precise command used is $(GET) $(GFLAGS). The rules for SCCS are terminal (see section Match-Anything Pattern Rules), so SCCS files cannot be generated from another source; they must actually exist.
For the benefit of SCCS, a file n is copied from n.sh and made executable (by everyone). This is for shell scripts that are checked into SCCS. Since RCS preserves the execution permission of a file, you do not need to use this feature with RCS.
We recommend that you avoid using of SCCS. RCS is widely held to be superior, and is also free. By choosing free software in place of comparable (or inferior) proprietary software, you support the free software movement.
Usually, you want to change only the variables listed in the table above, which are documented in the following section.
However, the commands in built-in implicit rules actually use variables such as
COMPILE.c
,LINK.p
, andPREPROCESS.S
, whose values contain the commands listed above.
make
follows the convention that the rule to compile a .x source file uses the variableCOMPILE.x
. Similarly, the rule to produce an executable from a .x file usesLINK.x
; and the rule to preprocess a .x file usesPREPROCESS.x
.Every rule that produces an object file uses the variable
OUTPUT_OPTION
.make
defines this variable either to contain -o $@, or to be empty, depending on a compile-time option. You need the -o option to ensure that the output goes into the right file when the source file is in a different directory, as when usingVPATH
(see section 4.5 Searching Directories for Prerequisites). However, compilers on some systems do not accept a -o switch for object files. If you use such a system, and useVPATH
, some compilations will put their output in the wrong place. A possible workaround for this problem is to giveOUTPUT_OPTION
the value ; mv $*.o $@.
< > << Up >> Top Contents index ? 10.3 Variables Used by Implicit Rules
The commands in built-in implicit rules make liberal use of certain predefined variables. alter these variables in the makefile, with arguments to
make
, or in the environment to alter how the implicit rules work without redefining the rules themselves. cancel all variables used by implicit rules with the -R or --no-builtin-variables option.For example, the command used to compile a C source file actually says $(CC) -c $(CFLAGS) $(CPPFLAGS). The default values of the variables used are cc and nothing, resulting in the command cc -c. By redefining CC to ncc, you could cause ncc to be used for all C compilations performed by the implicit rule. By redefining CFLAGS to be -g, you could pass the -g option to each compilation. All implicit rules that do C compilation use $(CC) to get the program name for the compiler and all include $(CFLAGS) among the arguments given to the compiler.
The variables used in implicit rules fall into two classes: those that are names of programs (like
CC
) and those that contain arguments for the programs (likeCFLAGS
). (The "name of a program" may also contain some command arguments, but it must start with an actual executable program name.) If a variable value contains more than one argument, separate them with spaces.Here is a table of variables used as names of programs in built-in rules:
AR
- Archive-maintaining program; default ar.
AS
- Program for doing assembly; default as.
CC
- Program for compiling C programs; default cc.
CXX
- Program for compiling C++ programs; default g++.
CO
- Program for extracting a file from RCS; default co.
CPP
- Program for running the C preprocessor, with results to standard output; default $(CC) -E.
FC
- Program for compiling or preprocessing Fortran and Ratfor programs; default f77.
GET
- Program for extracting a file from SCCS; default get.
LEX
- Program to use to turn Lex grammars into C programs or Ratfor programs; default lex.
PC
- Program for compiling Pascal programs; default pc.
YACC
- Program to use to turn Yacc grammars into C programs; default yacc.
YACCR
- Program to use to turn Yacc grammars into Ratfor programs; default yacc -r.
MAKEINFO
- Program to convert a Texinfo source file into an Info file; default makeinfo.
TEX
- Program to make TeX DVI files from TeX source; default tex.
TEXI2DVI
- Program to make TeX DVI files from Texinfo source; default texi2dvi.
WEAVE
- Program to translate Web into TeX; default weave.
CWEAVE
- Program to translate C Web into TeX; default cweave.
TANGLE
- Program to translate Web into Pascal; default tangle.
CTANGLE
- Program to translate C Web into C; default ctangle.
RM
- Command to remove a file; default rm -f.
Here is a table of variables whose values are additional arguments for the programs above. The default values for all of these is the empty string, unless otherwise noted.
ARFLAGS
- Flags to give the archive-maintaining program; default rv.
ASFLAGS
- Extra flags to give to the assembler (when explicitly invoked on a .s or .S file).
CFLAGS
- Extra flags to give to the C compiler.
CXXFLAGS
- Extra flags to give to the C++ compiler.
COFLAGS
- Extra flags to give to the RCS
co
program.
CPPFLAGS
- Extra flags to give to the C preprocessor and programs that use it (the C and Fortran compilers).
FFLAGS
- Extra flags to give to the Fortran compiler.
GFLAGS
- Extra flags to give to the SCCS
get
program.
LDFLAGS
- Extra flags to give to compilers when they are supposed to invoke the linker, ld.
LFLAGS
- Extra flags to give to Lex.
PFLAGS
- Extra flags to give to the Pascal compiler.
RFLAGS
- Extra flags to give to the Fortran compiler for Ratfor programs.
YFLAGS
- Extra flags to give to Yacc.
< > << Up >> Top Contents index ? 10.4 Chains of Implicit Rules
Sometimes a file can be made by a sequence of implicit rules. For example, a file n.o could be made from n.y by running first Yacc and then
cc
. Such a sequence is called a chain.If the file n.c exists, or is mentioned in the makefile, no special searching is required:
make
finds that the object file can be made by C compilation from n.c; later on, when considering how to make n.c, the rule for running Yacc is used. Ultimately both n.c and n.o are updated.However, even if n.c does not exist and is not mentioned,
make
knows how to envision it as the missing link between n.o and n.y! In this case, n.c is called an intermediate file. Oncemake
has decided to use the intermediate file, it is entered in the data base as if it had been mentioned in the makefile, along with the implicit rule that says how to create it.Intermediate files are remade using their rules just like all other files. But intermediate files are treated differently in two ways.
The first difference is what happens if the intermediate file does not exist. If an ordinary file b does not exist, and
make
considers a target that depends on b, it invariably creates b and then updates the target from b. But if b is an intermediate file, thenmake
can leave well enough alone. It won't bother updating b, or the ultimate target, unless some prerequisite of b is newer than that target or there is some other reason to update that target.The second difference is that if
make
does create b in order to update something else, it deletes b later on after it is no longer needed. Therefore, an intermediate file which did not exist beforemake
also does not exist aftermake
.make
reports the deletion to you by printing a rm -f command showing which file it is deleting.Ordinarily, a file cannot be intermediate if it is mentioned in the makefile as a target or prerequisite. However, explicitly mark a file as intermediate by listing it as a prerequisite of the special target
.INTERMEDIATE
. This takes effect even if the file is mentioned explicitly in some other way.prevent automatic deletion of an intermediate file by marking it as a secondary file. To do this, list it as a prerequisite of the special target
.SECONDARY
. When a file is secondary,make
will not create the file merely because it does not already exist, butmake
does not automatically delete the file. Marking a file as secondary also marks it as intermediate.list the target pattern of an implicit rule (such as %.o) as a prerequisite of the special target
.PRECIOUS
to preserve intermediate files made by implicit rules whose target patterns match that file's name; see 5.5 Interrupting or Killingmake
.A chain can involve more than two implicit rules. For example, it is possible to make a file foo from RCS/foo.y,v by running RCS, Yacc and
cc
. Then both foo.y and foo.c are intermediate files that are deleted at the end.No single implicit rule can appear more than once in a chain. This means that
make
will not even consider such a ridiculous thing as making foo from foo.o.o by running the linker twice. This constraint has the added benefit of preventing any infinite loop in the search for an implicit rule chain.There are some special implicit rules to optimize certain cases that would otherwise be handled by rule chains. For example, making foo from foo.c could be handled by compiling and linking with separate chained rules, using foo.o as an intermediate file. But what actually happens is that a special rule for this case does the compilation and linking with a single
cc
command. The optimized rule is used in preference to the step-by-step chain because it comes earlier in the ordering of rules.
< > << Up >> Top Contents index ? 10.5 Defining and Redefining Pattern Rules
You define an implicit rule by writing a pattern rule. A pattern rule looks like an ordinary rule, except that its target contains the character % (exactly one of them). The target is considered a pattern for matching file names; the % can match any nonempty substring, while other characters match only themselves. The prerequisites likewise use % to show how their names relate to the target name.
Thus, a pattern rule %.o : %.c says how to make any file stem.o from another file stem.c.
Note that expansion using % in pattern rules occurs after any variable or function expansions, which take place when the makefile is read. See section Use Variables, and Functions for Transforming Text.
10.5.1 Introduction to Pattern Rules An introduction to pattern rules. 10.5.2 Pattern Rule Examples Examples of pattern rules. 10.5.3 Automatic Variables use automatic variables in the commands of implicit rules. 10.5.4 How Patterns Match How patterns match. 10.5.5 Match-Anything Pattern Rules Precautions you should take prior to defining rules that can match any target file whatever. 10.5.6 Canceling Implicit Rules override or cancel built-in rules.
< > << Up >> Top Contents index ? 10.5.1 Introduction to Pattern Rules
A pattern rule contains the character % (exactly one of them) in the target; otherwise, it looks exactly like an ordinary rule. The target is a pattern for matching file names; the % matches any nonempty substring, while other characters match only themselves.
For example, %.c as a pattern matches any file name that ends in .c. s.%.c as a pattern matches any file name that starts with s., ends in .c and is at least five characters long. (There must be at least one character to match the %.) The substring that the % matches is called the stem.
% in a prerequisite of a pattern rule stands for the same stem that was matched by the % in the target. In order for the pattern rule to apply, its target pattern must match the file name under consideration, and its prerequisite patterns must name files that exist or can be made. These files become prerequisites of the target.
Thus, a rule of the form
%.o : %.c ; command...specifies how to make a file n.o, with another file n.c as its prerequisite, provided that n.c exists or can be made.
There may also be prerequisites that do not use %; such a prerequisite attaches to every file made by this pattern rule. These unvarying prerequisites are useful occasionally.
A pattern rule need not have any prerequisites that contain %, or in fact any prerequisites at all. Such a rule is effectively a general wildcard. It provides a way to make any file that matches the target pattern. See section 10.6 Defining Last-Resort Default Rules.
Pattern rules may have more than one target. Unlike normal rules, this does not act as many different rules with the same prerequisites and commands. If a pattern rule has multiple targets,
make
knows that the rule's commands are responsible for making all of the targets. The commands are executed only once to make all the targets. When searching for a pattern rule to match a target, the target patterns of a rule other than the one that matches the target in need of a rule are incidental:make
worries only about giving commands and prerequisites to the file presently in question. However, when this file's commands are run, the other targets are marked as having been updated themselves.The order in which pattern rules appear in the makefile is important since this is the order in which they are considered. Of equally applicable rules, only the first one found is used. The rules you write take precedence over those that are built in. Note however, that a rule whose prerequisites actually exist or are mentioned always takes priority over a rule with prerequisites that must be made by chaining other implicit rules.
< > << Up >> Top Contents index ? 10.5.2 Pattern Rule Examples
Here are some examples of pattern rules actually predefined in
make
. First, the rule that compiles .c files into .o files:
%.o : %.c $(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@defines a rule that can make any file x.o from x.c. The command uses the automatic variables $@ and $< to substitute the names of the target file and the source file in each case where the rule applies (see section Automatic Variables).
Here is a second built-in rule:
% :: RCS/%,v $(CO) $(COFLAGS) $<defines a rule that can make any file x whatsoever from a corresponding file x,v in the subdirectory RCS. Since the target is %, this rule will apply to any file whatever, provided the appropriate prerequisite file exists. The double colon makes the rule terminal, which means that its prerequisite may not be an intermediate file (see section Match-Anything Pattern Rules).
This pattern rule has two targets:
%.tab.c %.tab.h: %.y bison -d $<This tells
make
that the command bison -d x.y will make both x.tab.c and x.tab.h. If the file foo depends on the files parse.tab.o and scan.o and the file scan.o depends on the file parse.tab.h, when parse.y is changed, the command bison -d parse.y will be executed only once, and the prerequisites of both parse.tab.o and scan.o will be satisfied. (Presumably the file parse.tab.o will be recompiled from parse.tab.c and the file scan.o from scan.c, while foo is linked from parse.tab.o, scan.o, and its other prerequisites, and it will execute happily ever after.)
< > << Up >> Top Contents index ? 10.5.3 Automatic Variables
Suppose you are writing a pattern rule to compile a .c file into a .o file: how do you write the cc command so that it operates on the right source file name? not write the name in the command, because the name is different each time the implicit rule is applied.
What you do is use a special feature of
make
, the automatic variables. These variables have values computed afresh for each rule that is executed, based on the target and prerequisites of the rule. In this example, you would use $@ for the object file name and $< for the source file name.Here is a table of automatic variables:
$@
- The file name of the target of the rule. If the target is an archive member, then $@ is the name of the archive file. In a pattern rule that has multiple targets (see section Introduction to Pattern Rules), $@ is the name of whichever target caused the rule's commands to be run.
$%
- The target member name, when the target is an archive member. See section 11. Using
make
to Update Archive Files. For example, if the target is foo.a(bar.o) then $% is bar.o and $@ is foo.a. $% is empty when the target is not an archive member.$<
- The name of the first prerequisite. If the target got its commands from an implicit rule, this will be the first prerequisite added by the implicit rule (see section 10. Using Implicit Rules).
$?
- The names of all the prerequisites that are newer than the target, with spaces between them. For prerequisites which are archive members, only the member named is used (see section 11. Using
make
to Update Archive Files).$^
- The names of all the prerequisites, with spaces between them. For prerequisites which are archive members, only the member named is used (see section 11. Using
make
to Update Archive Files). A target has only one prerequisite on each other file it depends on, no matter how many times each file is listed as a prerequisite. So if you list a prerequisite more than once for a target, the value of$^
contains just one copy of the name.$+
- This is like $^, but prerequisites listed more than once are duplicated in the order they were listed in the makefile. This is primarily useful for use in linking commands where it is meaningful to repeat library file names in a particular order.
$*
- The stem with which an implicit rule matches (see section How Patterns Match). If the target is dir/a.foo.b and the target pattern is a.%.b then the stem is dir/foo. The stem is useful for constructing names of related files.
In a static pattern rule, the stem is part of the file name that matched the % in the target pattern.
In an explicit rule, there is no stem; so $* cannot be determined in that way. Instead, if the target name ends with a recognized suffix (see section Old-Fashioned Suffix Rules), $* is set to the target name minus the suffix. For example, if the target name is foo.c, then $* is set to foo, since .c is a suffix. GNU
make
does this bizarre thing only for compatibility with other implementations ofmake
. You should generally avoid using $* except in implicit rules or static pattern rules.If the target name in an explicit rule does not end with a recognized suffix, $* is set to the empty string for that rule.
$? is useful even in explicit rules when you wish to operate on only the prerequisites that have changed. For example, suppose that an archive named lib is supposed to contain copies of several object files. This rule copies just the changed object files into the archive:
lib: foo.o bar.o lose.o win.o ar r lib $?Of the variables listed above, four have values that are single file names, and three have values that are lists of file names. These seven have variants that get just the file's directory name or just the file name within the directory. The variant variables' names are formed by appending D or F, respectively. These variants are semi-obsolete in GNU
make
since the functionsdir
andnotdir
can be used to get a similar effect (see section Functions for File Names). Note, however, that the D variants all omit the trailing slash which always appears in the output of thedir
function. Here is a table of the variants:
- $(@D)
- The directory part of the file name of the target, with the trailing slash removed. If the value of $@ is dir/foo.o then $(@D) is dir. This value is . if $@ does not contain a slash.
- $(@F)
- The file-within-directory part of the file name of the target. If the value of $@ is dir/foo.o then $(@F) is foo.o. $(@F) is equivalent to $(notdir $@).
- $(*D)
- $(*F)
- The directory part and the file-within-directory part of the stem; dir and foo in this example.
- $(%D)
- $(%F)
- The directory part and the file-within-directory part of the target archive member name. This makes sense only for archive member targets of the form archive(member) and is useful only when member may contain a directory name. (See section Archive Members as Targets.)
- $(<D)
- $(<F)
- The directory part and the file-within-directory part of the first prerequisite.
- $(^D)
- $(^F)
- Lists of the directory parts and the file-within-directory parts of all prerequisites.
- $(+D)
- $(+F)
- Lists of the directory parts and the file-within-directory parts of all prerequisites, including multiple instances of duplicated prerequisites.
- $(?D)
- $(?F)
- Lists of the directory parts and the file-within-directory parts of all prerequisites that are newer than the target.
Note that we use a special stylistic convention when we talk about these automatic variables; we write "the value of $<", rather than "the variable
<
" as we would write for ordinary variables such asobjects
andCFLAGS
. We think this convention looks more natural in this special case. Please do not assume it has a deep significance; $< refers to the variable named<
just as $(CFLAGS) refers to the variable namedCFLAGS
. You could just as well use $(<) in place of $<.GNU
make
provides support for the SysVmake
feature that allows special variable references$$@
,$$(@D)
, and$$(@F)
(note the required double-"$"!) to appear with the prerequisites list (normal automatic variables are available only within a command script). When appearing in a prerequisites list, these variables are expanded to the name of the target, the directory component of the target, and the file component of the target, respectively.Note that these variables are available only within explicit and static pattern (see section Static Pattern Rules) rules; they have no special significance within implicit (suffix or pattern) rules. Also note that while SysV
make
actually expands its entire prerequisite list twice, GNUmake
does not behave this way: instead it simply expands these special variables without re-expanding any other part of the prerequisites list.This somewhat bizarre feature is included only to provide some compatibility with SysV makefiles. In a native GNU
make
file there are other ways to accomplish the same results. This feature is disabled if the special pseudo target.POSIX
is defined.
< > << Up >> Top Contents index ? 10.5.4 How Patterns Match
A target pattern is composed of a % between a prefix and a suffix, either or both of which may be empty. The pattern matches a file name only if the file name starts with the prefix and ends with the suffix, without overlap. The text between the prefix and the suffix is called the stem. Thus, when the pattern %.o matches the file name test.o, the stem is test. The pattern rule prerequisites are turned into actual file names by substituting the stem for the character %. Thus, if in the same example one of the prerequisites is written as %.c, it expands to test.c.
When the target pattern does not contain a slash (and it usually does not), directory names in the file names are removed from the file name before it is compared with the target prefix and suffix. After the comparison of the file name to the target pattern, the directory names, along with the slash that ends them, are added on to the prerequisite file names generated from the pattern rule's prerequisite patterns and the file name. The directories are ignored only for the purpose of finding an implicit rule to use, not in the application of that rule. Thus, e%t matches the file name src/eat, with src/a as the stem. When prerequisites are turned into file names, the directories from the stem are added at the front, while the rest of the stem is substituted for the %. The stem src/a with a prerequisite pattern c%r gives the file name src/car.
< > << Up >> Top Contents index ? 10.5.5 Match-Anything Pattern Rules
When a pattern rule's target is just %, it matches any file name whatever. We call these rules match-anything rules. They are very useful, but it can take a lot of time for
make
to think about them, because it must consider every such rule for each file name listed either as a target or as a prerequisite.Suppose the makefile mentions foo.c. For this target,
make
would have to consider making it by linking an object file foo.c.o, or by C compilation-and-linking in one step from foo.c.c, or by Pascal compilation-and-linking from foo.c.p, and many other possibilities.We know these possibilities are ridiculous since foo.c is a C source file, not an executable. If
make
did consider these possibilities, it would ultimately reject them, because files such as foo.c.o and foo.c.p would not exist. But these possibilities are so numerous thatmake
would run very slowly if it had to consider them.To gain speed, we have put various constraints on the way
make
considers match-anything rules. There are two different constraints that can be applied, and each time you define a match-anything rule you must choose one or the other for that rule.One choice is to mark the match-anything rule as terminal by defining it with a double colon. When a rule is terminal, it does not apply unless its prerequisites actually exist. Prerequisites that could be made with other implicit rules are not good enough. In other words, no further chaining is allowed beyond a terminal rule.
For example, the built-in implicit rules for extracting sources from RCS and SCCS files are terminal; as a result, if the file foo.c,v does not exist,
make
will not even consider trying to make it as an intermediate file from foo.c,v.o or from RCS/SCCS/s.foo.c,v. RCS and SCCS files are generally ultimate source files, which should not be remade from any other files; therefore,make
can save time by not looking for ways to remake them.If you do not mark the match-anything rule as terminal, then it is nonterminal. A nonterminal match-anything rule cannot apply to a file name that indicates a specific type of data. A file name indicates a specific type of data if some non-match-anything implicit rule target matches it.
For example, the file name foo.c matches the target for the pattern rule %.c : %.y (the rule to run Yacc). Regardless of whether this rule is actually applicable (which happens only if there is a file foo.y), the fact that its target matches is enough to prevent consideration of any nonterminal match-anything rules for the file foo.c. Thus,
make
will not even consider trying to make foo.c as an executable file from foo.c.o, foo.c.c, foo.c.p, etc.The motivation for this constraint is that nonterminal match-anything rules are used for making files containing specific types of data (such as executable files) and a file name with a recognized suffix indicates some other specific type of data (such as a C source file).
Special built-in dummy pattern rules are provided solely to recognize certain file names so that nonterminal match-anything rules will not be considered. These dummy rules have no prerequisites and no commands, and they are ignored for all other purposes. For example, the built-in implicit rule
%.p :exists to make sure that Pascal source files such as foo.p match a specific target pattern and thereby prevent time from being wasted looking for foo.p.o or foo.p.c.
Dummy pattern rules such as the one for %.p are made for every suffix listed as valid for use in suffix rules (see section Old-Fashioned Suffix Rules).
< > << Up >> Top Contents index ? 10.5.6 Canceling Implicit Rules
override a built-in implicit rule (or one you have defined yourself) by defining a new pattern rule with the same target and prerequisites, but different commands. When the new rule is defined, the built-in one is replaced. The new rule's position in the sequence of implicit rules is determined by where you write the new rule.
cancel a built-in implicit rule by defining a pattern rule with the same target and prerequisites, but no commands. For example, the following would cancel the rule that runs the assembler:
%.o : %.s
< > << Up >> Top Contents index ? 10.6 Defining Last-Resort Default Rules
define a last-resort implicit rule by writing a terminal match-anything pattern rule with no prerequisites (see section 10.5.5 Match-Anything Pattern Rules). This is just like any other pattern rule; the only thing special about it is that it will match any target. So such a rule's commands are used for all targets and prerequisites that have no commands of their own and for which no other implicit rule applies.
For example, when testing a makefile, you might not care if the source files contain real data, only that they exist. Then you might do this:
%:: touch $@to cause all the source files needed (as prerequisites) to be created automatically.
instead define commands to be used for targets for which there are no rules at all, even ones which don't specify commands. You do this by writing a rule for the target
.DEFAULT
. Such a rule's commands are used for all prerequisites which do not appear as targets in any explicit rule, and for which no implicit rule applies. Naturally, there is no.DEFAULT
rule unless you write one.If you use
.DEFAULT
with no commands or prerequisites:
.DEFAULT:the commands previously stored for
.DEFAULT
are cleared. Thenmake
acts as if you had never defined.DEFAULT
at all.If you do not want a target to get the commands from a match-anything pattern rule or
.DEFAULT
, but you also do not want any commands to be run for the target, give it empty commands (see section Defining Empty Commands).use a last-resort rule to override part of another makefile. See section Overriding Part of Another Makefile.
< > << Up >> Top Contents index ? 10.7 Old-Fashioned Suffix Rules
Suffix rules are the old-fashioned way of defining implicit rules for
make
. Suffix rules are obsolete because pattern rules are more general and clearer. They are supported in GNUmake
for compatibility with old makefiles. They come in two kinds: double-suffix and single-suffix.A double-suffix rule is defined by a pair of suffixes: the target suffix and the source suffix. It matches any file whose name ends with the target suffix. The corresponding implicit prerequisite is made by replacing the target suffix with the source suffix in the file name. A two-suffix rule whose target and source suffixes are .o and .c is equivalent to the pattern rule %.o : %.c.
A single-suffix rule is defined by a single suffix, which is the source suffix. It matches any file name, and the corresponding implicit prerequisite name is made by appending the source suffix. A single-suffix rule whose source suffix is .c is equivalent to the pattern rule % : %.c.
Suffix rule definitions are recognized by comparing each rule's target against a defined list of known suffixes. When
make
sees a rule whose target is a known suffix, this rule is considered a single-suffix rule. Whenmake
sees a rule whose target is two known suffixes concatenated, this rule is taken as a double-suffix rule.For example, .c and .o are both on the default list of known suffixes. Therefore, if you define a rule whose target is .c.o,
make
takes it to be a double-suffix rule with source suffix .c and target suffix .o. Here is the old-fashioned way to define the rule for compiling a C source file:
.c.o: $(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<Suffix rules cannot have any prerequisites of their own. If they have any, they are treated as normal files with funny names, not as suffix rules. Thus, the rule:
.c.o: foo.h $(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<tells how to make the file .c.o from the prerequisite file foo.h, and is not at all like the pattern rule:
%.o: %.c foo.h $(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<which tells how to make .o files from .c files, and makes all .o files using this pattern rule also depend on foo.h.
Suffix rules with no commands are also meaningless. They do not remove previous rules as do pattern rules with no commands (see section Canceling Implicit Rules). They simply enter the suffix or pair of suffixes concatenated as a target in the data base.
The known suffixes are simply the names of the prerequisites of the special target
.SUFFIXES
. add your own suffixes by writing a rule for.SUFFIXES
that adds more prerequisites, as in:
.SUFFIXES: .hack .winwhich adds .hack and .win to the end of the list of suffixes.
If you wish to eliminate the default known suffixes instead of just adding to them, write a rule for
.SUFFIXES
with no prerequisites. By special dispensation, this eliminates all existing prerequisites of.SUFFIXES
. then write another rule to add the suffixes you want. For example,
.SUFFIXES: # Delete the default suffixes .SUFFIXES: .c .o .h # Define our suffix listThe -r or --no-builtin-rules flag causes the default list of suffixes to be empty.
The variable
SUFFIXES
is defined to the default list of suffixes beforemake
reads any makefiles. change the list of suffixes with a rule for the special target.SUFFIXES
, but that does not alter this variable.
< > << Up >> Top Contents index ? 10.8 Implicit Rule Search Algorithm
Here is the procedure
make
uses for searching for an implicit rule for a target t. This procedure is followed for each double-colon rule with no commands, for each target of ordinary rules none of which have commands, and for each prerequisite that is not the target of any rule. It is also followed recursively for prerequisites that come from implicit rules, in the search for a chain of rules.Suffix rules are not mentioned in this algorithm because suffix rules are converted to equivalent pattern rules once the makefiles have been read in.
For an archive member target of the form archive(member), the following algorithm is run twice, first using the entire target name t, and second using (member) as the target t if the first run found no rule.
- Split t into a directory part, called d, and the rest, called n. For example, if t is src/foo.o, then d is src/ and n is foo.o.
- Make a list of all the pattern rules one of whose targets matches t or n. If the target pattern contains a slash, it is matched against t; otherwise, against n.
- If any rule in that list is not a match-anything rule, then remove all nonterminal match-anything rules from the list.
- Remove from the list all rules with no commands.
- For each pattern rule in the list:
- Find the stem s, which is the nonempty part of t or n matched by the % in the target pattern.
- Compute the prerequisite names by substituting s for %; if the target pattern does not contain a slash, append d to the front of each prerequisite name.
- Test whether all the prerequisites exist or ought to exist. (If a file name is mentioned in the makefile as a target or as an explicit prerequisite, then we say it ought to exist.)
If all prerequisites exist or ought to exist, or there are no prerequisites, then this rule applies.
- If no pattern rule has been found so far, try harder. For each pattern rule in the list:
- If the rule is terminal, ignore it and go on to the next rule.
- Compute the prerequisite names as before.
- Test whether all the prerequisites exist or ought to exist.
- For each prerequisite that does not exist, follow this algorithm recursively to see if the prerequisite can be made by an implicit rule.
- If all prerequisites exist, ought to exist, or can be made by implicit rules, then this rule applies.
- If no implicit rule applies, the rule for
.DEFAULT
, if any, applies. In that case, give t the same commands that.DEFAULT
has. Otherwise, there are no commands for t.Once a rule that applies has been found, for each target pattern of the rule other than the one that matched t or n, the % in the pattern is replaced with s and the resultant file name is stored until the commands to remake the target file t are executed. After these commands are executed, each of these stored file names are entered into the data base and marked as having been updated and having the same update status as the file t.
When the commands of a pattern rule are executed for t, the automatic variables are set corresponding to the target and prerequisites. See section Automatic Variables.
< > << Up >> Top Contents index ? 11. Using
make
to Update Archive FilesArchive files are files containing named subfiles called members; they are maintained with the program
ar
and their main use is as subroutine libraries for linking.
11.1 Archive Members as Targets Archive members as targets. 11.2 Implicit Rule for Archive Member Targets The implicit rule for archive member targets. 11.3 Dangers When Using Archives Dangers to watch out for when using archives. 11.4 Suffix Rules for Archive Files write a special kind of suffix rule for updating archives.
< > << Up >> Top Contents index ? 11.1 Archive Members as Targets
An individual member of an archive file can be used as a target or prerequisite in
make
. You specify the member named member in archive file archive as follows:
archive(member)This construct is available only in targets and prerequisites, not in commands! Most programs that you might use in commands do not support this syntax and cannot act directly on archive members. Only
ar
and other programs specifically designed to operate on archives can do so. Therefore, valid commands to update an archive member target probably must usear
. For example, this rule says to create a member hack.o in archive foolib by copying the file hack.o:
foolib(hack.o) : hack.o ar cr foolib hack.oIn fact, nearly all archive member targets are updated in just this way and there is an implicit rule to do it for you. Note: The c flag to
ar
is required if the archive file does not already exist.To specify several members in the same archive, write all the member names together between the parentheses. For example:
foolib(hack.o kludge.o)is equivalent to:
foolib(hack.o) foolib(kludge.o)also use shell-style wildcards in an archive member reference. See section Using Wildcard Characters in File Names. For example, foolib(*.o) expands to all existing members of the foolib archive whose names end in .o; perhaps foolib(hack.o) foolib(kludge.o).
< > << Up >> Top Contents index ? 11.2 Implicit Rule for Archive Member Targets
Recall that a target that looks like a(m) stands for the member named m in the archive file a.
When
make
looks for an implicit rule for such a target, as a special feature it considers implicit rules that match (m), as well as those that match the actual target a(m).This causes one special rule whose target is (%) to match. This rule updates the target a(m) by copying the file m into the archive. For example, it will update the archive member target foo.a(bar.o) by copying the file bar.o into the archive foo.a as a member named bar.o.
When this rule is chained with others, the result is very powerful. Thus, make "foo.a(bar.o)" (the quotes are needed to protect the ( and ) from being interpreted specially by the shell) in the presence of a file bar.c is enough to cause the following commands to be run, even without a makefile:
cc -c bar.c -o bar.o ar r foo.a bar.o rm -f bar.oHere
make
has envisioned the file bar.o as an intermediate file. See section Chains of Implicit Rules.Implicit rules such as this one are written using the automatic variable $%. See section Automatic Variables.
An archive member name in an archive cannot contain a directory name, but it may be useful in a makefile to pretend that it does. If you write an archive member target foo.a(dir/file.o),
make
will perform automatic updating with this command:
ar r foo.a dir/file.owhich has the effect of copying the file dir/file.o into a member named file.o. In connection with such usage, the automatic variables
%D
and%F
may be useful.
11.2.1 Updating Archive Symbol Directories update archive symbol directories.
< > << Up >> Top Contents index ? 11.2.1 Updating Archive Symbol Directories
An archive file that is used as a library usually contains a special member named __.SYMDEF that contains a directory of the external symbol names defined by all the other members. After you update any other members, you need to update __.SYMDEF so that it will summarize the other members properly. This is done by running the
ranlib
program:
ranlib archivefileNormally you would put this command in the rule for the archive file, and make all the members of the archive file prerequisites of that rule. For example,
libfoo.a: libfoo.a(x.o) libfoo.a(y.o) ... ranlib libfoo.aThe effect of this is to update archive members x.o, y.o, etc., and then update the symbol directory member __.SYMDEF by running
ranlib
. The rules for updating the members are not shown here; most likely omit them and use the implicit rule which copies files into the archive, as described in the preceding section.This is not necessary when using the GNU
ar
program, which updates the __.SYMDEF member automatically.
< > << Up >> Top Contents index ? 11.3 Dangers When Using Archives
It is important to be careful when using parallel execution (the
-j
switch; see section Parallel Execution) and archives. If multiplear
commands run at the same time on the same archive file, they will not know about each other and can corrupt the file.Possibly a future version of
make
will provide a mechanism to circumvent this problem by serializing all commands that operate on the same archive file. But for the time being, you must either write your makefiles to avoid this problem in some other way, or not use-j
.
< > << Up >> Top Contents index ? 11.4 Suffix Rules for Archive Files
write a special kind of suffix rule for dealing with archive files. See section 10.7 Old-Fashioned Suffix Rules, for a full explanation of suffix rules. Archive suffix rules are obsolete in GNU
make
, because pattern rules for archives are a more general mechanism (see section 11.2 Implicit Rule for Archive Member Targets). But they are retained for compatibility with othermake
s.To write a suffix rule for archives, you simply write a suffix rule using the target suffix .a (the usual suffix for archive files). For example, here is the old-fashioned suffix rule to update a library archive from C source files:
.c.a: $(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o $(AR) r $@ $*.o $(RM) $*.oThis works just as if you had written the pattern rule:
(%.o): %.c $(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o $(AR) r $@ $*.o $(RM) $*.oIn fact, this is just what
make
does when it sees a suffix rule with .a as the target suffix. Any double-suffix rule .x.a is converted to a pattern rule with the target pattern (%.o) and a prerequisite pattern of %.x.Since you might want to use .a as the suffix for some other kind of file,
make
also converts archive suffix rules to pattern rules in the normal way (see section 10.7 Old-Fashioned Suffix Rules). Thus a double-suffix rule .x.a produces two pattern rules: (%.o): %.x and %.a: %.x.
< > << Up >> Top Contents index ? 12. Features of GNU
make
Here is a summary of the features of GNU
make
, for comparison with and credit to other versions ofmake
. We consider the features ofmake
in 4.2 BSD systems as a baseline. If you are concerned with writing portable makefiles, you should not use the features ofmake
listed here, nor the ones in 13. Incompatibilities and Missing Features.Many features come from the version of
make
in System V.
- The
VPATH
variable and its special meaning. See section Searching Directories for Prerequisites. This feature exists in System Vmake
, but is undocumented. It is documented in 4.3 BSDmake
(which says it mimics System V'sVPATH
feature).
- Included makefiles. See section Including Other Makefiles. Allowing multiple files to be included with a single directive is a GNU extension.
- Variables are read from and communicated via the environment. See section Variables from the Environment.
- Options passed through the variable
MAKEFLAGS
to recursive invocations ofmake
. See section Communicating Options to a Sub-make
.
- The automatic variable
$%
is set to the member name in an archive reference. See section Automatic Variables.
- The automatic variables
$@
,$*
,$<
,$%
, and$?
have corresponding forms like$(@F)
and$(@D)
. We have generalized this to$^
as an obvious extension. See section Automatic Variables.
- Substitution variable references. See section Basics of Variable References.
- The command-line options -b and -m, accepted and ignored. In System V
make
, these options actually do something.
- Execution of recursive commands to run
make
via the variableMAKE
even if -n, -q or -t is specified. See section Recursive Use ofmake
.
- Support for suffix .a in suffix rules. See section 11.4 Suffix Rules for Archive Files. This feature is obsolete in GNU
make
, because the general feature of rule chaining (see section Chains of Implicit Rules) allows one pattern rule for installing members in an archive (see section 11.2 Implicit Rule for Archive Member Targets) to be sufficient.
- The arrangement of lines and backslash-newline combinations in commands is retained when the commands are printed, so they appear as they do in the makefile, except for the stripping of initial whitespace.
The following features were inspired by various other versions of
make
. In some cases it is unclear exactly which versions inspired which others.
- Pattern rules using %. This has been implemented in several versions of
make
. We're not sure who invented it first, but it's been spread around a bit. See section Defining and Redefining Pattern Rules.
- Rule chaining and implicit intermediate files. This was implemented by Stu Feldman in his version of
make
for AT&T Eighth Edition Research Unix, and later by Andrew Hume of AT&T Bell Labs in hismk
program (where he terms it "transitive closure"). We do not really know if we got this from either of them or thought it up ourselves at the same time. See section Chains of Implicit Rules.
- The automatic variable
$^
containing a list of all prerequisites of the current target. We did not invent this, but we have no idea who did. See section Automatic Variables. The automatic variable$+
is a simple extension of$^
.
- The "what if" flag (-W in GNU
make
) was (as far as we know) invented by Andrew Hume inmk
. See section Instead of Executing the Commands.
- The concept of doing several things at once (parallelism) exists in many incarnations of
make
and similar programs, though not in the System V or BSD implementations. See section Command Execution.
- Modified variable references using pattern substitution come from SunOS 4. See section Basics of Variable References. This functionality was provided in GNU
make
by thepatsubst
function before the alternate syntax was implemented for compatibility with SunOS 4. It is not altogether clear who inspired whom, since GNUmake
hadpatsubst
before SunOS 4 was released.
- The special significance of + characters preceding command lines (see section Instead of Executing the Commands) is mandated by IEEE Standard 1003.2-1992 (POSIX.2).
- The += syntax to append to the value of a variable comes from SunOS 4
make
. See section Appending More Text to Variables.
- The syntax archive(mem1 mem2...) to list multiple members in a single archive file comes from SunOS 4
make
. See section 11.1 Archive Members as Targets.
- The
-include
directive to include makefiles with no error for a nonexistent file comes from SunOS 4make
. (But note that SunOS 4make
does not allow multiple makefiles to be specified in one-include
directive.) The same feature appears with the namesinclude
in SGImake
and perhaps others.The remaining features are inventions new in GNU
make
:
- Use the -v or --version option to print version and copyright information.
- Use the -h or --help option to summarize the options to
make
.
- Simply-expanded variables. See section The Two Flavors of Variables.
- Pass command-line variable assignments automatically through the variable
MAKE
to recursivemake
invocations. See section Recursive Use ofmake
.
- Use the -C or --directory command option to change directory. See section Summary of Options.
- Make verbatim variable definitions with
define
. See section Defining Variables Verbatim.
- Declare phony targets with the special target
.PHONY
.Andrew Hume of AT&T Bell Labs implemented a similar feature with a different syntax in his
mk
program. This seems to be a case of parallel discovery. See section Phony Targets.
- Manipulate text by calling functions. See section Functions for Transforming Text.
- Use the -o or --old-file option to pretend a file's modification-time is old. See section Avoiding Recompilation of Some Files.
- Conditional execution.
This feature has been implemented numerous times in various versions of
make
; it seems a natural extension derived from the features of the C preprocessor and similar macro languages and is not a revolutionary concept. See section Conditional Parts of Makefiles.
- Specify a search path for included makefiles. See section Including Other Makefiles.
- Specify extra makefiles to read with an environment variable. See section The Variable
MAKEFILES
.
- Strip leading sequences of ./ from file names, so that ./file and file are considered to be the same file.
- Use a special search method for library prerequisites written in the form -lname. See section Directory Search for Link Libraries.
- Allow suffixes for suffix rules (see section Old-Fashioned Suffix Rules) to contain any characters. In other versions of
make
, they must begin with . and not contain any / characters.
- Keep track of the current level of
make
recursion using the variableMAKELEVEL
. See section Recursive Use ofmake
.
- Provide any goals given on the command line in the variable
MAKECMDGOALS
. See section Arguments to Specify the Goals.
- Specify static pattern rules. See section Static Pattern Rules.
- Provide selective
vpath
search. See section Searching Directories for Prerequisites.
- Provide computed variable references. See section Basics of Variable References.
- Update makefiles. See section How Makefiles Are Remade. System V
make
has a very, very limited form of this functionality in that it will check out SCCS files for makefiles.
- Various new built-in implicit rules. See section Catalogue of Implicit Rules.
- The built-in variable MAKE_VERSION gives the version number of
make
.
< > << Up >> Top Contents index ? 13. Incompatibilities and Missing Features
The
make
programs in various other systems support a few features that are not implemented in GNUmake
. The POSIX.2 standard (IEEE Standard 1003.2-1992) which specifiesmake
does not require any of these features.
- A target of the form file((entry)) stands for a member of archive file file. The member is chosen, not by name, but by being an object file which defines the linker symbol entry.
This feature was not put into GNU
make
because of the nonmodularity of putting knowledge intomake
of the internal format of archive file symbol tables. See section Updating Archive Symbol Directories.
- Suffixes (used in suffix rules) that end with the character ~ have a special meaning to System V
make
; they refer to the SCCS file that corresponds to the file one would get without the ~. For example, the suffix rule .c~.o would make the file n.o from the SCCS file s.n.c. For complete coverage, a whole series of such suffix rules is required. See section Old-Fashioned Suffix Rules.In GNU
make
, this entire series of cases is handled by two pattern rules for extraction from SCCS, in combination with the general feature of rule chaining. See section Chains of Implicit Rules.
- In System V and 4.3 BSD
make
, files found byVPATH
search (see section Searching Directories for Prerequisites) have their names changed inside command strings. We feel it is much cleaner to always use automatic variables and thus make this feature obsolete.
- In some Unix
make
s, the automatic variable$*
appearing in the prerequisites of a rule has the amazingly strange "feature" of expanding to the full name of the target of that rule. We cannot imagine what went on in the minds of Unixmake
developers to do this; it is utterly inconsistent with the normal definition of$*
.
- In some Unix
make
s, implicit rule search (see section Using Implicit Rules) is apparently done for all targets, not just those without commands. This means do:
foo.o: cc -c foo.cand Unix
make
will intuit that foo.o depends on foo.c.We feel that such usage is broken. The prerequisite properties of
make
are well-defined (for GNUmake
, at least), and doing such a thing simply does not fit the model.
- GNU
make
does not include any built-in implicit rules for compiling or preprocessing EFL programs. If we hear of anyone who is using EFL, we will gladly add them.
- It appears that in SVR4
make
, a suffix rule can be specified with no commands, and it is treated as if it had empty commands (see section 5.8 Using Empty Commands). For example:
.c.a:will override the built-in .c.a suffix rule.
We feel that it is cleaner for a rule without commands to always simply add to the prerequisite list for the target. The above example can be easily rewritten to get the desired behavior in GNU
make
:
.c.a: ;
- Some versions of
make
invoke the shell with the -e flag, except under -k (see section Testing the Compilation of a Program). The -e flag tells the shell to exit as soon as any program it runs returns a nonzero status. We feel it is cleaner to write each shell command line to stand on its own and not require this special treatment.
< > << Up >> Top Contents index ? 14. Makefile Conventions
This node describes conventions for writing the Makefiles for GNU programs. Using Automake will help you write a Makefile that follows these conventions.
14.1 General Conventions for Makefiles 14.2 Utilities in Makefiles 14.3 Variables for Specifying Commands 14.4 Variables for Installation Directories 14.5 Standard Targets for Users 14.6 Install Command Categories Three categories of commands in the `install' rule: normal, pre-install and post-install.
< > << Up >> Top Contents index ? 14.1 General Conventions for Makefiles
Every Makefile should contain this line:
SHELL = /bin/shto avoid trouble on systems where the
SHELL
variable might be inherited from the environment. (This is never a problem with GNUmake
.)Different
make
programs have incompatible suffix lists and implicit rules, and this sometimes creates confusion or misbehavior. So it is a good idea to set the suffix list explicitly using only the suffixes you need in the particular Makefile, like this:
.SUFFIXES: .SUFFIXES: .c .oThe first line clears out the suffix list, the second introduces all suffixes which may be subject to implicit rules in this Makefile.
Don't assume that . is in the path for command execution. When you need to run programs that are a part of your package during the make, please make sure that it uses ./ if the program is built as part of the make or $(srcdir)/ if the file is an unchanging part of the source code. Without one of these prefixes, the current search path is used.
The distinction between ./ (the build directory) and $(srcdir)/ (the source directory) is important because users can build in a separate directory using the --srcdir option to configure. A rule of the form:
foo.1 : foo.man sedscript sed -e sedscript foo.man > foo.1will fail when the build directory is not the source directory, because foo.man and sedscript are in the source directory.
When using GNU
make
, relying on VPATH to find the source file will work in the case where there is a single dependency file, since themake
automatic variable $< will represent the source file wherever it is. (Many versions ofmake
set $< only in implicit rules.) A Makefile target like
foo.o : bar.c $(CC) -I. -I$(srcdir) $(CFLAGS) -c bar.c -o foo.oshould instead be written as
foo.o : bar.c $(CC) -I. -I$(srcdir) $(CFLAGS) -c $< -o $@in order to allow VPATH to work correctly. When the target has multiple dependencies, using an explicit $(srcdir) is the easiest way to make the rule work well. For example, the target above for foo.1 is best written as:
foo.1 : foo.man sedscript sed -e $(srcdir)/sedscript $(srcdir)/foo.man > $@GNU distributions usually contain some files which are not source files--for example, Info files, and the output from Autoconf, Automake, Bison or Flex. Since these files normally appear in the source directory, they should always appear in the source directory, not in the build directory. So Makefile rules to update them should put the updated files in the source directory.
However, if a file does not appear in the distribution, then the Makefile should not put it in the source directory, because building a program in ordinary circumstances should not modify the source directory in any way.
Try to make the build and installation targets, at least (and all their subtargets) work correctly with a parallel
make
.
< > << Up >> Top Contents index ? 14.2 Utilities in Makefiles
Write the Makefile commands (and any shell scripts, such as
configure
) to run insh
, not incsh
. Don't use any special features ofksh
orbash
.The
configure
script and the Makefile rules for building and installation should not use any utilities directly except these:
cat cmp cp diff echo egrep expr false grep install-info ln ls mkdir mv pwd rm rmdir sed sleep sort tar test touch trueThe compression program
gzip
can be used in thedist
rule.Stick to the generally supported options for these programs. For example, don't use mkdir -p, convenient as it may be, because most systems don't support it.
It is a good idea to avoid creating symbolic links in makefiles, since a few systems don't support them.
The Makefile rules for building and installation can also use compilers and related programs, but should do so via
make
variables so that the user can substitute alternatives. Here are some of the programs we mean:
ar bison cc flex install ld ldconfig lex make makeinfo ranlib texi2dvi yaccUse the following
make
variables to run those programs:
$(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LDCONFIG) $(LEX) $(MAKE) $(MAKEINFO) $(RANLIB) $(TEXI2DVI) $(YACC)When you use
ranlib
orldconfig
, you should make sure nothing bad happens if the system does not have the program in question. Arrange to ignore an error from that command, and print a message before the command to tell the user that failure of this command does not mean a problem. (The Autoconf AC_PROG_RANLIB macro can help with this.)If you use symbolic links, you should implement a fallback for systems that don't have symbolic links.
Additional utilities that can be used via Make variables are:
chgrp chmod chown mknodIt is ok to use other utilities in Makefile portions (or scripts) intended only for particular systems where you know those utilities exist.
< > << Up >> Top Contents index ? 14.3 Variables for Specifying Commands
Makefiles should provide variables for overriding certain commands, options, and so on.
In particular, you should run most utility programs via variables. Thus, if you use Bison, have a variable named
BISON
whose default value is set with BISON = bison, and refer to it with$(BISON)
whenever you need to use Bison.File management utilities such as
ln
,rm
,mv
, and so on, need not be referred to through variables in this way, since users don't need to replace them with other programs.Each program-name variable should come with an options variable that is used to supply options to the program. Append FLAGS to the program-name variable name to get the options variable name--for example,
BISONFLAGS
. (The namesCFLAGS
for the C compiler,YFLAGS
for yacc, andLFLAGS
for lex, are exceptions to this rule, but we keep them because they are standard.) UseCPPFLAGS
in any compilation command that runs the preprocessor, and useLDFLAGS
in any compilation command that does linking as well as in any direct use ofld
.If there are C compiler options that must be used for proper compilation of certain files, do not include them in
CFLAGS
. Users expect to be able to specifyCFLAGS
freely themselves. Instead, arrange to pass the necessary options to the C compiler independently ofCFLAGS
, by writing them explicitly in the compilation commands or by defining an implicit rule, like this:
CFLAGS = -g ALL_CFLAGS = -I. $(CFLAGS) .c.o: $(CC) -c $(CPPFLAGS) $(ALL_CFLAGS) $<Do include the -g option in
CFLAGS
, because that is not required for proper compilation. consider it a default that is only recommended. If the package is set up so that it is compiled with GCC by default, then you might as well include -O in the default value ofCFLAGS
as well.Put
CFLAGS
last in the compilation command, after other variables containing compiler options, so the user can useCFLAGS
to override the others.
CFLAGS
should be used in every invocation of the C compiler, both those which do compilation and those which do linking.Every Makefile should define the variable
INSTALL
, which is the basic command for installing a file into the system.Every Makefile should also define the variables
INSTALL_PROGRAM
andINSTALL_DATA
. (The default forINSTALL_PROGRAM
should be$(INSTALL)
; the default forINSTALL_DATA
should be${INSTALL} -m 644
.) Then it should use those variables as the commands for actual installation, for executables and nonexecutables respectively. Use these variables as follows:
$(INSTALL_PROGRAM) foo $(bindir)/foo $(INSTALL_DATA) libfoo.a $(libdir)/libfoo.aOptionally, you may prepend the value of
DESTDIR
to the target filename. Doing this allows the installer to create a snapshot of the installation to be copied onto the real target filesystem later. Do not set the value ofDESTDIR
in your Makefile, and do not include it in any installed files. With support forDESTDIR
, the above examples become:
$(INSTALL_PROGRAM) foo $(DESTDIR)$(bindir)/foo $(INSTALL_DATA) libfoo.a $(DESTDIR)$(libdir)/libfoo.aAlways use a file name, not a directory name, as the second argument of the installation commands. Use a separate command for each file to be installed.
< > << Up >> Top Contents index ? 14.4 Variables for Installation Directories
Installation directories should always be named by variables, so it is easy to install in a nonstandard place. The standard names for these variables are described below. They are based on a standard filesystem layout; variants of it are used in SVR4, 4.4BSD, GNU/Linux, Ultrix v4, and other modern operating systems.
These two variables set the root for the installation. All the other installation directories should be subdirectories of one of these two, and nothing should be directly installed into these two directories.
prefix
- A prefix used in constructing the default values of the variables listed below. The default value of
prefix
should be /usr/local. When building the complete GNU system, the prefix will be empty and /usr will be a symbolic link to /. (If you are using Autoconf, write it as @prefix@.)Running make install with a different value of
prefix
from the one used to build the program should not recompile the program.
exec_prefix
- A prefix used in constructing the default values of some of the variables listed below. The default value of
exec_prefix
should be$(prefix)
. (If you are using Autoconf, write it as @exec_prefix@.)Generally,
$(exec_prefix)
is used for directories that contain machine-specific files (such as executables and subroutine libraries), while$(prefix)
is used directly for other directories.Running make install with a different value of
exec_prefix
from the one used to build the program should not recompile the program.Executable programs are installed in one of the following directories.
bindir
- The directory for installing executable programs that users can run. This should normally be /usr/local/bin, but write it as $(exec_prefix)/bin. (If you are using Autoconf, write it as @bindir@.)
sbindir
- The directory for installing executable programs that can be run from the shell, but are only generally useful to system administrators. This should normally be /usr/local/sbin, but write it as $(exec_prefix)/sbin. (If you are using Autoconf, write it as @sbindir@.)
libexecdir
- The directory for installing executable programs to be run by other programs rather than by users. This directory should normally be /usr/local/libexec, but write it as $(exec_prefix)/libexec. (If you are using Autoconf, write it as @libexecdir@.)
Data files used by the program during its execution are divided into categories in two ways.
- Some files are normally modified by programs; others are never normally modified (though users may edit some of these).
- Some files are architecture-independent and can be shared by all machines at a site; some are architecture-dependent and can be shared only by machines of the same kind and operating system; others may never be shared between two machines.
This makes for six different possibilities. However, we want to discourage the use of architecture-dependent files, aside from object files and libraries. It is much cleaner to make other data files architecture-independent, and it is generally not hard.
Therefore, here are the variables Makefiles should use to specify directories:
- datadir
- The directory for installing read-only architecture independent data files. This should normally be /usr/local/share, but write it as $(prefix)/share. (If you are using Autoconf, write it as @datadir@.) As a special exception, see $(infodir) and $(includedir) below.
- sysconfdir
- The directory for installing read-only data files that pertain to a single machine--that is to say, files for configuring a host. Mailer and network configuration files, /etc/passwd, and so forth belong here. All the files in this directory should be ordinary ASCII text files. This directory should normally be /usr/local/etc, but write it as $(prefix)/etc. (If you are using Autoconf, write it as @sysconfdir@.)
Do not install executables here in this directory (they probably belong in $(libexecdir) or $(sbindir)). Also do not install files that are modified in the normal course of their use (programs whose purpose is to change the configuration of the system excluded). Those probably belong in $(localstatedir).
- sharedstatedir
- The directory for installing architecture-independent data files which the programs modify while they run. This should normally be /usr/local/com, but write it as $(prefix)/com. (If you are using Autoconf, write it as @sharedstatedir@.)
- localstatedir
- The directory for installing data files which the programs modify while they run, and that pertain to one specific machine. Users should never need to modify files in this directory to configure the package's operation; put such configuration information in separate files that go in $(datadir) or $(sysconfdir). $(localstatedir) should normally be /usr/local/var, but write it as $(prefix)/var. (If you are using Autoconf, write it as @localstatedir@.)
- libdir
- The directory for object files and libraries of object code. Do not install executables here, they probably ought to go in $(libexecdir) instead. The value of
libdir
should normally be /usr/local/lib, but write it as $(exec_prefix)/lib. (If you are using Autoconf, write it as @libdir@.)
- infodir
- The directory for installing the Info files for this package. By default, it should be /usr/local/info, but it should be written as $(prefix)/info. (If you are using Autoconf, write it as @infodir@.)
- lispdir
- The directory for installing any Emacs Lisp files in this package. By default, it should be /usr/local/share/emacs/site-lisp, but it should be written as $(prefix)/share/emacs/site-lisp.
If you are using Autoconf, write the default as @lispdir@. In order to make @lispdir@ work, you need the following lines in your configure.in file:
lispdir='${datadir}/emacs/site-lisp' AC_SUBST(lispdir)
- includedir
- The directory for installing header files to be included by user programs with the C #include preprocessor directive. This should normally be /usr/local/include, but write it as $(prefix)/include. (If you are using Autoconf, write it as @includedir@.)
Most compilers other than GCC do not look for header files in directory /usr/local/include. So installing the header files this way is only useful with GCC. Sometimes this is not a problem because some libraries are only really intended to work with GCC. But some libraries are intended to work with other compilers. They should install their header files in two places, one specified by
includedir
and one specified byoldincludedir
.
- oldincludedir
- The directory for installing #include header files for use with compilers other than GCC. This should normally be /usr/include. (If you are using Autoconf, write it as @oldincludedir@.)
The Makefile commands should check whether the value of
oldincludedir
is empty. If it is, they should not try to use it; they should cancel the second installation of the header files.A package should not replace an existing header in this directory unless the header came from the same package. Thus, if your Foo package provides a header file foo.h, then it should install the header file in the
oldincludedir
directory if either (1) there is no foo.h there or (2) the foo.h that exists came from the Foo package.To tell whether foo.h came from the Foo package, put a magic string in the file--part of a comment--and
grep
for that string.Unix-style man pages are installed in one of the following:
- mandir
- The top-level directory for installing the man pages (if any) for this package. It will normally be /usr/local/man, but you should write it as $(prefix)/man. (If you are using Autoconf, write it as @mandir@.)
- man1dir
- The directory for installing section 1 man pages. Write it as $(mandir)/man1.
- man2dir
- The directory for installing section 2 man pages. Write it as $(mandir)/man2
- ...
Don't make the primary documentation for any GNU software be a man page. Write a manual in Texinfo instead. Man pages are just for the sake of people running GNU software on Unix, which is a secondary application only.
- manext
- The file name extension for the installed man page. This should contain a period followed by the appropriate digit; it should normally be .1.
- man1ext
- The file name extension for installed section 1 man pages.
- man2ext
- The file name extension for installed section 2 man pages.
- ...
- Use these names instead of manext if the package needs to install man pages in more than one section of the manual.
And finally, you should set the following variable:
- srcdir
- The directory for the sources being compiled. The value of this variable is normally inserted by the
configure
shell script. (If you are using Autconf, use srcdir = @srcdir@.)For example:
# Common prefix for installation directories. # NOTE: This directory must exist when you start the install. prefix = /usr/local exec_prefix = $(prefix) # Where to put the executable for the command `gcc'. bindir = $(exec_prefix)/bin # Where to put the directories used by the compiler. libexecdir = $(exec_prefix)/libexec # Where to put the Info files. infodir = $(prefix)/infoIf your program installs a large number of files into one of the standard user-specified directories, it might be useful to group them into a subdirectory particular to that program. If you do this, you should write the
install
rule to create these subdirectories.Do not expect the user to include the subdirectory name in the value of any of the variables listed above. The idea of having a uniform set of variable names for installation directories is to enable the user to specify the exact same values for several different GNU packages. In order for this to be useful, all the packages must be designed so that they will work sensibly when the user does so.
< > << Up >> Top Contents index ? 14.5 Standard Targets for Users
All GNU programs should have the following targets in their Makefiles:
- all
- Compile the entire program. This should be the default target. This target need not rebuild any documentation files; Info files should normally be included in the distribution, and DVI files should be made only when explicitly asked for.
By default, the Make rules should compile and link with -g, so that executable programs have debugging symbols. Users who don't mind being helpless can strip the executables later if they wish.
- install
- Compile the program and copy the executables, libraries, and so on to the file names where they should reside for actual use. If there is a simple test to verify that a program is properly installed, this target should run that test.
Do not strip executables when installing them. Devil-may-care users can use the
install-strip
target to do that.If possible, write the
install
target rule so that it does not modify anything in the directory where the program was built, provided make all has just been done. This is convenient for building the program under one user name and installing it under another.The commands should create all the directories in which files are to be installed, if they don't already exist. This includes the directories specified as the values of the variables
prefix
andexec_prefix
, as well as all subdirectories that are needed. One way to do this is by means of aninstalldirs
target as described below.Use - before any command for installing a man page, so that
make
will ignore any errors. This is in case there are systems that don't have the Unix man page documentation system installed.The way to install Info files is to copy them into $(infodir) with
$(INSTALL_DATA)
(see section 14.3 Variables for Specifying Commands), and then run theinstall-info
program if it is present.install-info
is a program that edits the Info dir file to add or update the menu entry for the given Info file; it is part of the Texinfo package. Here is a sample rule to install an Info file:
$(DESTDIR)$(infodir)/foo.info: foo.info $(POST_INSTALL) # There may be a newer info file in . than in srcdir. -if test -f foo.info; then d=.; \ else d=$(srcdir); fi; \ $(INSTALL_DATA) $$d/foo.info $(DESTDIR)$@; \ # Run install-info only if it exists. # Use `if' instead of just prepending `-' to the # line so we notice real errors from install-info. # We use `$(SHELL) -c' because some shells do not # fail gracefully when there is an unknown command. if $(SHELL) -c 'install-info --version' \ >/dev/null 2>&1; then \ install-info --dir-file=$(DESTDIR)$(infodir)/dir \ $(DESTDIR)$(infodir)/foo.info; \ else true; fiWhen writing the
install
target, you must classify all the commands into three categories: normal ones, pre-installation commands and post-installation commands. See section 14.6 Install Command Categories.
- uninstall
- Delete all the installed files--the copies that the install target creates.
This rule should not modify the directories where compilation is done, only the directories where files are installed.
The uninstallation commands are divided into three categories, just like the installation commands. See section 14.6 Install Command Categories.
- install-strip
- Like
install
, but strip the executable files while installing them. In simple cases, this target can use theinstall
target in a simple way:
install-strip: $(MAKE) INSTALL_PROGRAM='$(INSTALL_PROGRAM) -s' \ installBut if the package installs scripts as well as real executables, the
install-strip
target can't just refer to theinstall
target; it has to strip the executables but not the scripts.
install-strip
should not strip the executables in the build directory which are being copied for installation. It should only strip the copies that are installed.Normally we do not recommend stripping an executable unless you are sure the program has no bugs. However, it can be reasonable to install a stripped executable for actual execution while saving the unstripped executable elsewhere in case there is a bug.
- clean
Delete all files from the current directory that are normally created by building the program. Don't delete the files that record the configuration. Also preserve files that could be made by building, but normally aren't because the distribution comes with them.
Delete .dvi files here if they are not part of the distribution.
- distclean
- Delete all files from the current directory that are created by configuring or building the program. If you have unpacked the source and built the program without creating any other files, make distclean should leave only the files that were in the distribution.
- mostlyclean
- Like clean, but may refrain from deleting a few files that people normally don't want to recompile. For example, the mostlyclean target for GCC does not delete libgcc.a, because recompiling it is rarely necessary and takes a lot of time.
- maintainer-clean
- Delete almost everything from the current directory that can be reconstructed with this Makefile. This typically includes everything deleted by
distclean
, plus more: C source files produced by Bison, tags tables, Info files, and so on.The reason we say "almost everything" is that running the command make maintainer-clean should not delete configure even if configure can be remade using a rule in the Makefile. More generally, make maintainer-clean should not delete anything that needs to exist in order to run configure and then begin to build the program. This is the only exception;
maintainer-clean
should delete everything else that can be rebuilt.The maintainer-clean target is intended to be used by a maintainer of the package, not by ordinary users. You may need special tools to reconstruct some of the files that make maintainer-clean deletes. Since these files are normally included in the distribution, we don't take care to make them easy to reconstruct. If you find you need to unpack the full distribution again, don't blame us.
To help make users aware of this, the commands for the special
maintainer-clean
target should start with these two:
@echo 'This command is intended for maintainers to use; it' @echo 'deletes files that may need special tools to rebuild.'
- TAGS
- Update a tags table for this program.
- info
- Generate any Info files needed. The best way to write the rules is as follows:
info: foo.info foo.info: foo.texi chap1.texi chap2.texi $(MAKEINFO) $(srcdir)/foo.texiYou must define the variable
MAKEINFO
in the Makefile. It should run themakeinfo
program, which is part of the Texinfo distribution.Normally a GNU distribution comes with Info files, and that means the Info files are present in the source directory. Therefore, the Make rule for an info file should update it in the source directory. When users build the package, ordinarily Make will not update the Info files because they will already be up to date.
- dvi
- Generate DVI files for all Texinfo documentation. For example:
dvi: foo.dvi foo.dvi: foo.texi chap1.texi chap2.texi $(TEXI2DVI) $(srcdir)/foo.texiYou must define the variable
TEXI2DVI
in the Makefile. It should run the programtexi2dvi
, which is part of the Texinfo distribution.(3) Alternatively, write just the dependencies, and allow GNUmake
to provide the command.
- dist
- Create a distribution tar file for this program. The tar file should be set up so that the file names in the tar file start with a subdirectory name which is the name of the package it is a distribution for. This name can include the version number.
For example, the distribution tar file of GCC version 1.40 unpacks into a subdirectory named gcc-1.40.
The easiest way to do this is to create a subdirectory appropriately named, use
ln
orcp
to install the proper files in it, and thentar
that subdirectory.Compress the tar file with
gzip
. For example, the actual distribution file for GCC version 1.40 is called gcc-1.40.tar.gz.The
dist
target should explicitly depend on all non-source files that are in the distribution, to make sure they are up to date in the distribution. See section `Making Releases' in GNU Coding Standards.
- check
- Perform self-tests (if any). The user must build the program before running the tests, but need not install the program; you should write the self-tests so that they work when the program is built but not installed.
The following targets are suggested as conventional names, for programs in which they are useful.
installcheck
- Perform installation tests (if any). The user must build and install the program before running the tests. You should not assume that $(bindir) is in the search path.
installdirs
- It's useful to add a target named installdirs to create the directories where files are installed, and their parent directories. There is a script called mkinstalldirs which is convenient for this; find it in the Texinfo package. use a rule like this:
# Make sure all installation directories (e.g. $(bindir)) # actually exist by making them if necessary. installdirs: mkinstalldirs $(srcdir)/mkinstalldirs $(bindir) $(datadir) \ $(libdir) $(infodir) \ $(mandir)or, if you wish to support
DESTDIR
,
# Make sure all installation directories (e.g. $(bindir)) # actually exist by making them if necessary. installdirs: mkinstalldirs $(srcdir)/mkinstalldirs \ $(DESTDIR)$(bindir) $(DESTDIR)$(datadir) \ $(DESTDIR)$(libdir) $(DESTDIR)$(infodir) \ $(DESTDIR)$(mandir)This rule should not modify the directories where compilation is done. It should do nothing but create installation directories.
< > << Up >> Top Contents index ? 14.6 Install Command Categories
When writing the
install
target, you must classify all the commands into three categories: normal ones, pre-installation commands and post-installation commands.Normal commands move files into their proper places, and set their modes. They may not alter any files except the ones that come entirely from the package they belong to.
Pre-installation and post-installation commands may alter other files; in particular, they can edit global configuration files or data bases.
Pre-installation commands are typically executed before the normal commands, and post-installation commands are typically run after the normal commands.
The most common use for a post-installation command is to run
install-info
. This cannot be done with a normal command, since it alters a file (the Info directory) which does not come entirely and solely from the package being installed. It is a post-installation command because it needs to be done after the normal command which installs the package's Info files.Most programs don't need any pre-installation commands, but we have the feature just in case it is needed.
To classify the commands in the
install
rule into these three categories, insert category lines among them. A category line specifies the category for the commands that follow.A category line consists of a tab and a reference to a special Make variable, plus an optional comment at the end. There are three variables use, one for each category; the variable name specifies the category. Category lines are no-ops in ordinary execution because these three Make variables are normally undefined (and you should not define them in the makefile).
Here are the three possible category lines, each with a comment that explains what it means:
$(PRE_INSTALL) # Pre-install commands follow. $(POST_INSTALL) # Post-install commands follow. $(NORMAL_INSTALL) # Normal commands follow.If you don't use a category line at the beginning of the
install
rule, all the commands are classified as normal until the first category line. If you don't use any category lines, all the commands are classified as normal.These are the category lines for
uninstall
:
$(PRE_UNINSTALL) # Pre-uninstall commands follow. $(POST_UNINSTALL) # Post-uninstall commands follow. $(NORMAL_UNINSTALL) # Normal commands follow.Typically, a pre-uninstall command would be used for deleting entries from the Info directory.
If the
install
oruninstall
target has any dependencies which act as subroutines of installation, then you should start each dependency's commands with a category line, and start the main target's commands with a category line also. This way, ensure that each command is placed in the right category regardless of which of the dependencies actually run.Pre-installation and post-installation commands should not run any programs except for these:
[ basename bash cat chgrp chmod chown cmp cp dd diff echo egrep expand expr false fgrep find getopt grep gunzip gzip hostname install install-info kill ldconfig ln ls md5sum mkdir mkfifo mknod mv printenv pwd rm rmdir sed sort tee test touch true uname xargs yesThe reason for distinguishing the commands in this way is for the sake of making binary packages. Typically a binary package contains all the executables and other files that need to be installed, and has its own method of installing them--so it does not need to run the normal installation commands. But installing the binary package does need to execute the pre-installation and post-installation commands.
Programs to build binary packages work by extracting the pre-installation and post-installation commands. Here is one way of extracting the pre-installation commands:
make -n install -o all \ PRE_INSTALL=pre-install \ POST_INSTALL=post-install \ NORMAL_INSTALL=normal-install \ | gawk -f pre-install.awkwhere the file pre-install.awk could contain this:
$0 ~ /^\t[ \t]*(normal_install|post_install)[ \t]*$/ {on = 0} on {print $0} $0 ~ /^\t[ \t]*pre_install[ \t]*$/ {on = 1}The resulting file of pre-installation commands is executed as a shell script as part of installing the binary package.
< > << Up >> Top Contents index ? A. Quick Reference
This appendix summarizes the directives, text manipulation functions, and special variables which GNU
make
understands. See section 4.9 Special Built-in Target Names, Catalogue of Implicit Rules, and Summary of Options, for other summaries.Here is a summary of the directives GNU
make
recognizes:
define variable
endef
Define a multi-line, recursively-expanded variable.
See section 5.7 Defining Canned Command Sequences.
ifdef variable
ifndef variable
ifeq (a,b)
ifeq "a" "b"
ifeq 'a 'b
ifneq (a,b)
ifneq "a" "b"
ifneq 'a 'b
else
endif
Conditionally evaluate part of the makefile.
See section 7. Conditional Parts of Makefiles.
include file
-include file
sinclude file
Include another makefile.
See section Including Other Makefiles.
override variable = value
override variable := value
override variable += value
override variable ?= value
override define variable
endef
Define a variable, overriding any previous definition, even one from the command line.
See section Theoverride
Directive.
export
Tell
make
to export all variables to child processes by default.
See section Communicating Variables to a Sub-make
.
export variable
export variable = value
export variable := value
export variable += value
export variable ?= value
unexport variable
- Tell
make
whether or not to export a particular variable to child processes.
See section Communicating Variables to a Sub-make
.
vpath pattern path
- Specify a search path for files matching a % pattern.
See section Thevpath
Directive.
vpath pattern
- Remove all search paths previously specified for pattern.
vpath
- Remove all search paths previously specified in any
vpath
directive.Here is a summary of the text manipulation functions (see section 8. Functions for Transforming Text):
$(subst from,to,text)
- Replace from with to in text.
See section Functions for String Substitution and Analysis.
$(patsubst pattern,replacement,text)
- Replace words matching pattern with replacement in text.
See section Functions for String Substitution and Analysis.
$(strip string)
- Remove excess whitespace characters from string.
See section Functions for String Substitution and Analysis.
$(findstring find,text)
- Locate find in text.
See section Functions for String Substitution and Analysis.
$(filter pattern...,text)
- Select words in text that match one of the pattern words.
See section Functions for String Substitution and Analysis.
$(filter-out pattern...,text)
- Select words in text that do not match any of the pattern words.
See section Functions for String Substitution and Analysis.
$(sort list)
- Sort the words in list lexicographically, removing duplicates.
See section Functions for String Substitution and Analysis.
$(dir names...)
- Extract the directory part of each file name.
See section Functions for File Names.
$(notdir names...)
- Extract the non-directory part of each file name.
See section Functions for File Names.
$(suffix names...)
- Extract the suffix (the last . and following characters) of each file name.
See section Functions for File Names.
$(basename names...)
- Extract the base name (name without suffix) of each file name.
See section Functions for File Names.
$(addsuffix suffix,names...)
- Append suffix to each word in names.
See section Functions for File Names.
$(addprefix prefix,names...)
- Prepend prefix to each word in names.
See section Functions for File Names.
$(join list1,list2)
- Join two parallel lists of words.
See section Functions for File Names.
$(word n,text)
- Extract the nth word (one-origin) of text.
See section Functions for File Names.
$(words text)
- Count the number of words in text.
See section Functions for File Names.
$(wordlist s,e,text)
- Returns the list of words in text from s to e.
See section Functions for File Names.
$(firstword names...)
- Extract the first word of names.
See section Functions for File Names.
$(wildcard pattern...)
- Find file names matching a shell file name pattern (not a % pattern).
See section The Functionwildcard
.
$(error text...)
When this function is evaluated,
make
generates a fatal error with the message text.
See section Functions That Control Make.
$(warning text...)
When this function is evaluated,
make
generates a warning with the message text.
See section Functions That Control Make.
$(shell command)
Execute a shell command and return its output.
See section Theshell
Function.
$(origin variable)
Return a string describing how the
make
variable variable was defined.
See section Theorigin
Function.
$(foreach var,words,text)
Evaluate text with var bound to each word in words, and concatenate the results.
See section Theforeach
Function.
$(call var,param,...)
Evaluate the variable var replacing any references to
$(1)
,$(2)
with the first, second, etc. param values.
See section Thecall
Function.Here is a summary of the automatic variables. See section Automatic Variables, for full information.
$@
- The file name of the target.
$%
- The target member name, when the target is an archive member.
$<
- The name of the first prerequisite.
$?
- The names of all the prerequisites that are newer than the target, with spaces between them. For prerequisites which are archive members, only the member named is used (see section 11. Using
make
to Update Archive Files).
$^
$+
- The names of all the prerequisites, with spaces between them. For prerequisites which are archive members, only the member named is used (see section 11. Using
make
to Update Archive Files). The value of$^
omits duplicate prerequisites, while$+
retains them and preserves their order.
$*
- The stem with which an implicit rule matches (see section How Patterns Match).
$(@D)
$(@F)
- The directory part and the file-within-directory part of
$@
.
$(*D)
$(*F)
- The directory part and the file-within-directory part of
$*
.
$(%D)
$(%F)
- The directory part and the file-within-directory part of
$%
.
$(<D)
$(<F)
- The directory part and the file-within-directory part of
$<
.
$(^D)
$(^F)
- The directory part and the file-within-directory part of
$^
.
$(+D)
$(+F)
- The directory part and the file-within-directory part of
$+
.
$(?D)
$(?F)
- The directory part and the file-within-directory part of
$?
.These variables are used specially by GNU
make
:
MAKEFILES
Makefiles to be read on every invocation of
make
.
See section The VariableMAKEFILES
.
VPATH
Directory search path for files not found in the current directory.
See sectionVPATH
Search Path for All Prerequisites.
SHELL
The name of the system default command interpreter, usually /bin/sh. set
SHELL
in the makefile to change the shell used to run commands. See section Command Execution.
MAKESHELL
On MS-DOS only, the name of the command interpreter that is to be used by
make
. This value takes precedence over the value ofSHELL
. See section MAKESHELL variable.
MAKE
The name with which
make
was invoked. Using this variable in commands has special meaning. See section How theMAKE
Variable Works.
MAKELEVEL
The number of levels of recursion (sub-
make
s).
See section 5.6.2 Communicating Variables to a Sub-make
.
MAKEFLAGS
The flags given to
make
. set this in the environment or a makefile to set flags.
See section Communicating Options to a Sub-make
.It is never appropriate to use
MAKEFLAGS
directly on a command line: its contents may not be quoted correctly for use in the shell. Always allow recursivemake
s to obtain these values through the environment from its parent.
MAKECMDGOALS
The targets given to
make
on the command line. Setting this variable has no effect on the operation ofmake
.
See section Arguments to Specify the Goals.
CURDIR
Set to the pathname of the current working directory (after all
-C
options are processed, if any). Setting this variable has no effect on the operation ofmake
.
See section Recursive Use ofmake
.
SUFFIXES
The default list of suffixes before
make
reads any makefiles.
.LIBPATTERNS
- Defines the naming of the libraries
make
searches for, and their order.
See section Directory Search for Link Libraries.
< > << Up >> Top Contents index ? B. Errors Generated by Make
Here is a list of the more common errors you might see generated by
make
, and some information about what they mean and how to fix them.Sometimes
make
errors are not fatal, especially in the presence of a-
prefix on a command script line, or the-k
command line option. Errors that are fatal are prefixed with the string***
.Error messages are all either prefixed with the name of the program (usually make), or, if the error is found in a makefile, the name of the file and linenumber containing the problem.
In the table below, these common prefixes are left off.
- foo] Error NN
- foo] signal description
- These errors are not really
make
errors at all. They mean that a program thatmake
invoked as part of a command script returned a non-0 error code (Error NN), whichmake
interprets as failure, or it exited in some other abnormal fashion (with a signal of some type). See section Errors in Commands.If no
***
is attached to the message, then the subprocess failed but the rule in the makefile was prefixed with the-
special character, somake
ignored the error.
- missing separator. Stop.
- missing separator (did you mean TAB instead of 8 spaces?). Stop.
- This means that
make
could not understand much of anything about the command line it just read. GNUmake
looks for various kinds of separators (:
,=
, TAB characters, etc.) to help it decide what kind of commandline it's seeing. This means it couldn't find a valid one.One of the most common reasons for this message is that you (or perhaps your oh-so-helpful editor, as is the case with many MS-Windows editors) have attempted to indent your command scripts with spaces instead of a TAB character. In this case,
make
will use the second form of the error above. Remember that every line in the command script must begin with a TAB character. Eight spaces do not count. See section 4.2 Rule Syntax.
- commands commence before first target. Stop.
- missing rule before commands. Stop.
- This means the first thing in the makefile seems to be part of a command script: it begins with a TAB character and doesn't appear to be a legal
make
command (such as a variable assignment). Command scripts must always be associated with a target.The second form is generated if the line has a semicolon as the first non-whitespace character;
make
interprets this to mean you left out the "target: prerequisite" section of a rule. See section 4.2 Rule Syntax.
- No rule to make target xxx.
- No rule to make target xxx, needed by yyy.
- This means that
make
decided it needed to build a target, but then couldn't find any instructions in the makefile on how to do that, either explicit or implicit (including in the default rules database).If you want that file to be built, you will need to add a rule to your makefile describing how that target can be built. Other possible sources of this problem are typos in the makefile (if that filename is wrong) or a corrupted source tree (if that file is not supposed to be built, but rather only a prerequisite).
- No targets specified and no makefile found. Stop.
- No targets. Stop.
- The former means that you didn't provide any targets to be built on the command line, and
make
couldn't find any makefiles to read in. The latter means that some makefile was found, but it didn't contain any default target and none was given on the command line. GNUmake
has nothing to do in these situations. See section Arguments to Specify the Makefile.
- Makefile xxx was not found.
- Included makefile xxx was not found.
- A makefile specified on the command line (first form) or included (second form) was not found.
- warning: overriding commands for target xxx
- warning: ignoring old commands for target xxx
- GNU
make
allows commands to be specified only once per target (except for double-colon rules). If you give commands for a target which already has been defined to have commands, this warning is issued and the second set of commands will overwrite the first set. See section Multiple Rules for One Target.
- Circular xxx <- yyy dependency dropped.
- This means that
make
detected a loop in the dependency graph: after tracing the prerequisite yyy of target xxx, and its prerequisites, etc., one of them depended on xxx again.
- Recursive variable xxx references itself (eventually). Stop.
- This means you've defined a normal (recursive)
make
variable xxx that, when it's expanded, will refer to itself (xxx). This is not allowed; either use simply-expanded variables (:=
) or use the append operator (+=
). See section Use Variables.
- Unterminated variable reference. Stop.
- This means you forgot to provide the proper closing parenthesis or brace in your variable or function reference.
- insufficient arguments to function xxx. Stop.
- This means you haven't provided the requisite number of arguments for this function. See the documentation of the function for a description of its arguments. See section Functions for Transforming Text.
- missing target pattern. Stop.
- multiple target patterns. Stop.
- target pattern contains no `%'. Stop.
- mixed implicit and static pattern rules. Stop.
- These are generated for malformed static pattern rules. The first means there's no pattern in the target section of the rule; the second means there are multiple patterns in the target section; the third means the target doesn't contain a pattern character (
%
); and the fourth means that all three parts of the static pattern rule contain pattern characters (%
)--only the first two parts should. See section Syntax of Static Pattern Rules.
- warning: -jN forced in submake: disabling jobserver mode.
- This warning and the next are generated if
make
detects error conditions related to parallel processing on systems where sub-make
s can communicate (see section Communicating Options to a Sub-make
). This warning is generated if a recursive invocation of amake
process is forced to have -jN in its argument list (where N is greater than one). This could happen, for example, if you set theMAKE
environment variable to make -j2. In this case, the sub-make
doesn't communicate with othermake
processes and will simply pretend it has two jobs of its own.
- warning: jobserver unavailable: using -j1. Add `+' to parent make rule.
- In order for
make
processes to communicate, the parent will pass information to the child. Since this could result in problems if the child process isn't actually amake
, the parent will only do this if it thinks the child is amake
. The parent uses the normal algorithms to determine this (see section How theMAKE
Variable Works). If the makefile is constructed such that the parent doesn't know the child is amake
process, then the child will receive only part of the information necessary. In this case, the child will generate this warning message and proceed with its build in a sequential manner.
< > << Up >> Top Contents index ? C. Complex Makefile Example
Here is the makefile for the GNU
tar
program. This is a moderately complex makefile.Because it is the first target, the default goal is all. An interesting feature of this makefile is that testpad.h is a source file automatically created by the
testpad
program, itself compiled from testpad.c.If you type make or make all, then
make
creates the tar executable, the rmt daemon that provides remote tape access, and the tar.info Info file.If you type make install, then
make
not only creates tar, rmt, and tar.info, but also installs them.If you type make clean, then
make
removes the .o files, and the tar, rmt, testpad, testpad.h, and core files.If you type make distclean, then
make
not only removes the same files as does make clean but also the TAGS, Makefile, and config.status files. (Although it is not evident, this makefile (and config.status) is generated by the user with theconfigure
program, which is provided in thetar
distribution, but is not shown here.)If you type make realclean, then
make
removes the same files as does make distclean and also removes the Info files generated from tar.texinfo.In addition, there are targets
shar
anddist
that create distribution kits.
# Generated automatically from Makefile.in by configure. # Un*x Makefile for GNU tar program. # Copyright (C) 1991 Free Software Foundation, Inc. # This program is free software; redistribute # it and/or modify it under the terms of the GNU # General Public License ... ... ... SHELL = /bin/sh #### Start of system configuration section. #### srcdir = . # If you use gcc, you should either run the # fixincludes script that comes with it or else use # gcc with the -traditional option. Otherwise ioctl # calls will be compiled incorrectly on some systems. CC = gcc -O YACC = bison -y INSTALL = /usr/local/bin/install -c INSTALLDATA = /usr/local/bin/install -c -m 644 # Things you might add to DEFS: # -DSTDC_HEADERS If you have ANSI C headers and # libraries. # -DPOSIX If you have POSIX.1 headers and # libraries. # -DBSD42 If you have sys/dir.h (unless # you use -DPOSIX), sys/file.h, # and st_blocks in `struct stat'. # -DUSG If you have System V/ANSI C # string and memory functions # and headers, sys/sysmacros.h, # fcntl.h, getcwd, no valloc, # and ndir.h (unless # you use -DDIRENT). # -DNO_MEMORY_H If USG or STDC_HEADERS but do not # include memory.h. # -DDIRENT If USG and you have dirent.h # instead of ndir.h. # -DSIGTYPE=int If your signal handlers # return int, not void. # -DNO_MTIO If you lack sys/mtio.h # (magtape ioctls). # -DNO_REMOTE If you do not have a remote shell # or rexec. # -DUSE_REXEC To use rexec for remote tape # operations instead of # forking rsh or remsh. # -DVPRINTF_MISSING If you lack vprintf function # (but have _doprnt). # -DDOPRNT_MISSING If you lack _doprnt function. # Also need to define # -DVPRINTF_MISSING. # -DFTIME_MISSING If you lack ftime system call. # -DSTRSTR_MISSING If you lack strstr function. # -DVALLOC_MISSING If you lack valloc function. # -DMKDIR_MISSING If you lack mkdir and # rmdir system calls. # -DRENAME_MISSING If you lack rename system call. # -DFTRUNCATE_MISSING If you lack ftruncate # system call. # -DV7 On Version 7 Unix (not # tested in a long time). # -DEMUL_OPEN3 If you lack a 3-argument version # of open, and want to emulate it # with system calls you do have. # -DNO_OPEN3 If you lack the 3-argument open # and want to disable the tar -k # option instead of emulating open. # -DXENIX If you have sys/inode.h # and need it 94 to be included. DEFS = -DSIGTYPE=int -DDIRENT -DSTRSTR_MISSING \ -DVPRINTF_MISSING -DBSD42 # Set this to rtapelib.o unless you defined NO_REMOTE, # in which case make it empty. RTAPELIB = rtapelib.o LIBS = DEF_AR_FILE = /dev/rmt8 DEFBLOCKING = 20 CDEBUG = -g CFLAGS = $(CDEBUG) -I. -I$(srcdir) $(DEFS) \ -DDEF_AR_FILE=\"$(DEF_AR_FILE)\" \ -DDEFBLOCKING=$(DEFBLOCKING) LDFLAGS = -g prefix = /usr/local # Prefix for each installed program, # normally empty or `g'. binprefix = # The directory to install tar in. bindir = $(prefix)/bin # The directory to install the info files in. infodir = $(prefix)/info #### End of system configuration section. #### SRC1 = tar.c create.c extract.c buffer.c \ getoldopt.c update.c gnu.c mangle.c SRC2 = version.c list.c names.c diffarch.c \ port.c wildmat.c getopt.c SRC3 = getopt1.c regex.c getdate.y SRCS = $(SRC1) $(SRC2) $(SRC3) OBJ1 = tar.o create.o extract.o buffer.o \ getoldopt.o update.o gnu.o mangle.o OBJ2 = version.o list.o names.o diffarch.o \ port.o wildmat.o getopt.o OBJ3 = getopt1.o regex.o getdate.o $(RTAPELIB) OBJS = $(OBJ1) $(OBJ2) $(OBJ3) AUX = README COPYING ChangeLog Makefile.in \ makefile.pc configure configure.in \ tar.texinfo tar.info* texinfo.tex \ tar.h port.h open3.h getopt.h regex.h \ rmt.h rmt.c rtapelib.c alloca.c \ msd_dir.h msd_dir.c tcexparg.c \ level-0 level-1 backup-specs testpad.c all: tar rmt tar.info tar: $(OBJS) $(CC) $(LDFLAGS) -o $@ $(OBJS) $(LIBS) rmt: rmt.c $(CC) $(CFLAGS) $(LDFLAGS) -o $@ rmt.c tar.info: tar.texinfo makeinfo tar.texinfo install: all $(INSTALL) tar $(bindir)/$(binprefix)tar -test ! -f rmt || $(INSTALL) rmt /etc/rmt $(INSTALLDATA) $(srcdir)/tar.info* $(infodir) $(OBJS): tar.h port.h testpad.h regex.o buffer.o tar.o: regex.h # getdate.y has 8 shift/reduce conflicts. testpad.h: testpad ./testpad testpad: testpad.o $(CC) -o $@ testpad.o TAGS: $(SRCS) etags $(SRCS) clean: rm -f *.o tar rmt testpad testpad.h core distclean: clean rm -f TAGS Makefile config.status realclean: distclean rm -f tar.info* shar: $(SRCS) $(AUX) shar $(SRCS) $(AUX) | compress \ > tar-`sed -e '/version_string/!d' \ -e 's/[^0-9.]*\([0-9.]*\).*/\1/' \ -e q version.c`.shar.Z dist: $(SRCS) $(AUX) echo tar-`sed \ -e '/version_string/!d' \ -e 's/[^0-9.]*\([0-9.]*\).*/\1/' \ -e q version.c` > .fname -rm -rf `cat .fname` mkdir `cat .fname` ln $(SRCS) $(AUX) `cat .fname` tar chZf `cat .fname`.tar.Z `cat .fname` -rm -rf `cat .fname` .fname tar.zoo: $(SRCS) $(AUX) -rm -rf tmp.dir -mkdir tmp.dir -rm tar.zoo for X in $(SRCS) $(AUX) ; do \ echo $$X ; \ sed 's/$$/^M/' $$X \ > tmp.dir/$$X ; done cd tmp.dir ; zoo aM ../tar.zoo * -rm -rf tmp.dir
< > [ << ] Up [ >> ] Top Contents index ? D. GNU Free Documentation License
Version 1.1, March 2000
Copyright © 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
- PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.
This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
- APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you".
A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.
The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.
The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License.
A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML produced by some word processors for output purposes only.
The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.
- VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.
- COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of added material, which the general network-using public has access to download anonymously at no charge using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
- MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
- Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
- List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five).
- State on the Title page the name of the publisher of the Modified Version, as the publisher.
- Preserve all the copyright notices of the Document.
- Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
- Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
- Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
- Include an unaltered copy of this License.
- Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
- Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
- In any section entitled "Acknowledgments" or "Dedications", preserve the section's title, and preserve in the section all the substance and tone of each of the contributor acknowledgments and/or dedications given therein.
- Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
- Delete any section entitled "Endorsements". Such a section may not be included in the Modified Version.
- Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.
You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
- COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections entitled "History" in the various original documents, forming one section entitled "History"; likewise combine any sections entitled "Acknowledgments", and any sections entitled "Dedications". You must delete all sections entitled "Endorsements."
- COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
- AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an "aggregate", and this License does not apply to the other self-contained works thus compiled with the Document, on account of their being thus compiled, if they are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.
- TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License provided that you also include the original English version of this License. In case of a disagreement between the translation and the original English version of this License, the original English version will prevail.
- TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
- FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.
< > [ << ] Up [ >> ] Top Contents index ? D.1 ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:
Copyright (C) year your name. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being list their titles, with the Front-Cover Texts being list, and with the Back-Cover Texts being list. A copy of the license is included in the section entitled ``GNU Free Documentation License''.If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being list"; likewise for Back-Cover Texts.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
< > << Up >> Top Contents index ? Index of Concepts
Jump to: # $ % * + , - . : = ? @ \ _ ~
A B C D E F G H I J K L M N O P Q R S T U V W Y
Jump to: # $ % * + , - . : = ? @ \ _ ~
A B C D E F G H I J K L M N O P Q R S T U V W Y
< [ > ] << Up [ >> ] Top Contents index ? Index of Functions, Variables, & Directives
Jump to: $ % * + . / < ? @ ^
A B C D E F G I J L M N O P R S T U V W Y
Jump to: $ % * + . / < ? @ ^
A B C D E F G I J L M N O P R S T U V W Y
Top Contents index ? Footnotes
(1)
GNU Make compiled for MS-DOS and MS-Windows behaves as if prefix has been defined to be the root of the DJGPP tree hierarchy.
(2)
On MS-DOS, the value of current working directory is global, so changing it will affect the following command lines on those systems.
(3)
texi2dvi
uses TeX to do the real work of formatting. TeX is not distributed with Texinfo.
Top Contents index ? Table of Contents
1. Overview ofmake
1.1 How to Read This Manual2. An Introduction to Makefiles
1.2 Problems and Bugs
2.1 What a Rule Looks Like3. Writing Makefiles
2.2 A Simple Makefile
2.3 Howmake
Processes a Makefile
2.4 Variables Make Makefiles Simpler
2.5 Lettingmake
Deduce the Commands
2.6 Another Style of Makefile
2.7 Rules for Cleaning the Directory
3.1 What Makefiles Contain4. Writing Rules
3.2 What Name to Give Your Makefile
3.3 Including Other Makefiles
3.4 The VariableMAKEFILES
3.5 The VariableMAKEFILE_LIST
3.6 Other Special Variables
3.7 How Makefiles Are Remade
3.8 Overriding Part of Another Makefile
3.9 Howmake
Reads a Makefile
4.1 Rule Example5. Writing the Commands in Rules
4.2 Rule Syntax
4.3 Types of Prerequisites
4.4 Using Wildcard Characters in File Names
4.4.1 Wildcard Examples4.5 Searching Directories for Prerequisites
4.4.2 Pitfalls of Using Wildcards
4.4.3 The Functionwildcard
4.5.14.6 Phony TargetsVPATH
: Search Path for All Prerequisites
4.5.2 Thevpath
Directive
4.5.3 How Directory Searches are Performed
4.5.4 Writing Shell Commands with Directory Search
4.5.5 Directory Search and Implicit Rules
4.5.6 Directory Search for Link Libraries
4.7 Rules without Commands or Prerequisites
4.8 Empty Target Files to Record Events
4.9 Special Built-in Target Names
4.10 Multiple Targets in a Rule
4.11 Multiple Rules for One Target
4.12 Static Pattern Rules
4.12.1 Syntax of Static Pattern Rules4.13 Double-Colon Rules
4.12.2 Static Pattern Rules versus Implicit Rules
4.14 Generating Prerequisites Automatically
5.1 Command Echoing6. How to Use Variables
5.2 Command Execution
5.3 Parallel Execution
5.4 Errors in Commands
5.5 Interrupting or Killingmake
5.6 Recursive Use ofmake
5.6.1 How the5.7 Defining Canned Command SequencesMAKE
Variable Works
5.6.2 Communicating Variables to a Sub-make
5.6.3 Communicating Options to a Sub-make
5.6.4 The --print-directory Option
5.8 Using Empty Commands
6.1 Basics of Variable References7. Conditional Parts of Makefiles
6.2 The Two Flavors of Variables
6.3 Advanced Features for Reference to Variables
6.3.1 Substitution References6.4 How Variables Get Their Values
6.3.2 Computed Variable Names
6.5 Setting Variables
6.6 Appending More Text to Variables
6.7 Theoverride
Directive
6.8 Defining Variables Verbatim
6.9 Variables from the Environment
6.10 Target-specific Variable Values
6.11 Pattern-specific Variable Values
7.1 Example of a Conditional8. Functions for Transforming Text
7.2 Syntax of Conditionals
7.3 Conditionals that Test Flags
8.1 Function Call Syntax9. How to Run
8.2 Functions for String Substitution and Analysis
8.3 Functions for File Names
8.4 Theforeach
Function
8.5 Theif
Function
8.6 Thecall
Function
8.7 Thevalue
Function
8.8 Theeval
Function
8.9 Theorigin
Function
8.10 Theshell
Function
8.11 Functions That Control Make
make
9.1 Arguments to Specify the Makefile10. Using Implicit Rules
9.2 Arguments to Specify the Goals
9.3 Instead of Executing the Commands
9.4 Avoiding Recompilation of Some Files
9.5 Overriding Variables
9.6 Testing the Compilation of a Program
9.7 Summary of Options
10.1 Using Implicit Rules11. Using
10.2 Catalogue of Implicit Rules
10.3 Variables Used by Implicit Rules
10.4 Chains of Implicit Rules
10.5 Defining and Redefining Pattern Rules
10.5.1 Introduction to Pattern Rules10.6 Defining Last-Resort Default Rules
10.5.2 Pattern Rule Examples
10.5.3 Automatic Variables
10.5.4 How Patterns Match
10.5.5 Match-Anything Pattern Rules
10.5.6 Canceling Implicit Rules
10.7 Old-Fashioned Suffix Rules
10.8 Implicit Rule Search Algorithm
make
to Update Archive Files
11.1 Archive Members as Targets12. Features of GNU
11.2 Implicit Rule for Archive Member Targets
11.2.1 Updating Archive Symbol Directories11.3 Dangers When Using Archives
11.4 Suffix Rules for Archive Files
make
13. Incompatibilities and Missing Features
14. Makefile Conventions
14.1 General Conventions for MakefilesA. Quick Reference
14.2 Utilities in Makefiles
14.3 Variables for Specifying Commands
14.4 Variables for Installation Directories
14.5 Standard Targets for Users
14.6 Install Command Categories
B. Errors Generated by Make
C. Complex Makefile Example
D. GNU Free Documentation License
D.1 ADDENDUM: How to use this License for your documentsIndex of Concepts
Index of Functions, Variables, & Directives
Top Contents index ? Short Table of Contents
1. Overview ofmake
2. An Introduction to Makefiles 3. Writing Makefiles 4. Writing Rules 5. Writing the Commands in Rules 6. How to Use Variables 7. Conditional Parts of Makefiles 8. Functions for Transforming Text 9. How to Runmake
10. Using Implicit Rules 11. Usingmake
to Update Archive Files12. Features of GNU make
13. Incompatibilities and Missing Features 14. Makefile Conventions A. Quick Reference B. Errors Generated by Make C. Complex Makefile Example D. GNU Free Documentation License Index of Concepts Index of Functions, Variables, & Directives
Top Contents index ? About this document
This document was generated using texi2html The buttons in the navigation panels have the following meaning:where the Example assumes that the current position is at Subsubsection One-Two-Three of a document of the following structure:
Button Name Go to From 1.2.3 go to [ < ] Back previous section in reading order 1.2.2 [ > ] Forward next section in reading order 1.2.4 [ << ] FastBack previous or up-and-previous section 1.1 [ Up ] Up up section 1.2 [ >> ] FastForward next or up-and-next section 1.3 [Top] Top cover (top) of document [Contents] Contents table of contents index Index concept index [ ? ] About this page
- 1. Section One
- 1.1 Subsection One-One
- ...
- 1.2 Subsection One-Two
- 1.2.1 Subsubsection One-Two-One
- 1.2.2 Subsubsection One-Two-Two
- 1.2.3 Subsubsection One-Two-Three <== Current Position
- 1.2.4 Subsubsection One-Two-Four
- 1.3 Subsection One-Three
- ...
- 1.4 Subsection One-Four
This document was generated by Jeff Bailey on December, 25 2002 aka 3.8.0 using texi2html THere exists 4.2.93 01/03/20As of Mac OS 11.0 , Big Sur,version is GNU Make 3.81 2006 built for i386-apple-darwin11.3.0
Really old.GNU make went from 4.2.1. in 6/10/2016 to 4.3 in 1/19/2020 with no interviening versions